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The motor cortex was the one of the first cortical areas to be explored electrophysiologically, yet little agreement has emerged

regarding its basic response properties. Often it is assumed that single-neuron responses reflect a preference for a particular

movement or movement variable. It may be further assumed that movement is generated by (or at least accompanied by) a

growing population-level preference for the relevant movement. This view has been attractive because it provides a canonical

form for the single neuron, a link between preparatory and movement activity, a way of interpreting the population response,

and a platform for designing analyses and couching hypotheses. However, this traditional view yields predictions that are at

odds with basic features of the data. We discuss an alternative simplified model, in which outgoing commands are produced by

dynamics that generate different output patterns as a function of the initial preparatory state. For reaching tasks, we hypoth-

esized simple quasioscillatory dynamics because they provide a natural basis set for the empirical patterns of muscle activity.

The predictions of the dynamical model match the data well at both the single-neuron and population levels, and the

quasioscillatory patterns explain many of the otherwise odd features of the neural responses.

Since the pioneering work of Evarts (1968), a central
goal of motor physiology has been to understand the
relationship between neural activity in motor cortex and
movement itself. Much of the subsequent literature has
leveraged tasks in which monkeys execute reaches (or
directed wrist movements) to targets at different spatial
locations (Georgopoulos et al. 1986; Moran and Schwartz
1999; Kakei et al. 2001). In many versions of this task
(Fig. 1) a target is presented but it is required that move-
ment execution be delayed until after a go cue (Weinrich
et al. 1984; Crammond and Kalaska 2000). The resulting
“preparatory period” (between target onset and the go
cue) is employed because it temporally separates neural
activity related to movement preparation from neural ac-
tivity related to movement itself. The key question is then:
How does neural activity unfold during the preparatory
and movement periods? Does activity before the go cue
prepare the system for the production of movement activ-
ity? If so, how? What patterns of activity are present
during movement, and what purpose do they serve?

It is widely accepted that neural activity in motor cortex

is complex and heterogeneous—across time, across neu-

rons, and across different reach types. A central goal of

motor physiology is then to create simple models that

capture basic response features and offer explanations

for why those features exist. Consider the neural response

before and during the two reaches illustrated in Figure

2A. Many models and/or analyses have assumed the

framework illustrated in Figure 2B,D. The schematic sin-

gle-neuron response (Fig. 2B) gives a larger response for

the reach down and to the right (red); that neuron is thus

said to “prefer” that direction. This preference becomes

apparent during preparation and grows stronger during

movement. Neural responses consistent with this view

are often observed in population averages (Requin et al.

1988; Georgopoulos et al. 1989a; Riehle and Requin

1989; Bastian et al. 1998, 2003; Erlhagen et al. 1999;

Cisek 2006a). Accordingly, it is often posited that move-

ment onset is triggered when response strength passes a

threshold or reaches a peak.

The single-neuron view in Figure 2B is readily extended

to the population level (Georgopoulos et al. 1986, 1989b)

by considering the response in neural “state space” (Fig.

2D). Each axis captures a “factor”: a weighted sum of the

neural responses. In this case x1 might be the average

activity of rightward-preferring neurons minus the aver-

age activity of leftward-preferring neurons. Accordingly,

x2 might be the average activity of upward-preferring

neurons minus the average activity of downward-prefer-

ring neurons. A reach in a given direction would be gen-

erated when the “neural state” expands away from baseline

and crosses a threshold. This hypothesis possesses some

appealing features. First, it resembles the mechanism by

which saccades are prepared and generated (e.g., Hanes

and Schall 1996). Second, directions in neural state space

correspond to directions in physical space. This provides

a concrete interpretation of the neural state as a represen-

tation of external factors such as reach direction or veloc-

ity. For example, the neural state might be modeled as

xðt; cÞ ¼ gðvðt; cÞÞ; ð1Þ
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where v(t,c) is a vector of hand velocity for time t and

condition c. The function g( ) captures “tuning” of neural

activity for reach velocity and may be linear or nonlinear.

This traditional view remains prevalent in motor physi-

ology (e.g., Pearce and Moran 2012) and virtually all

motor prosthetic applications use models that contain re-

lationships similar to that in Equation 1 (e.g., Gilja et al.

2012).

We recently proposed (Churchland et al. 2012; Shenoy

et al. 2013) an alternative “dynamical” model. The

dynamical model extends the view that motor cortex pro-

duces a muscle-like output (Evarts 1968; Cheney and

Fetz 1980; Lemon et al. 1986; Todorov 2000; Sergio

et al. 2005; Pohlmeyer et al. 2007; Schieber and Rivlis

2007; Lillicrap and Scott 2013), yet carries important

additional implications. In this dynamical model the

dominant motif during reaching is a rotation of the neural

state (Fig. 2E) rather than an expansion (Fig. 2D). It is still

proposed, as in the traditional model, that the preparatory

response involves an expansion away from baseline.

However, this preparatory state then “seeds” subsequent

oscillatory dynamics, producing a rotation of the neural

state that lasts �1–1.5 cycles (Churchland et al. 2010).

Rotations of the neural state imply quasioscillatory sin-

gle-neuron response patterns (Fig. 2C), but the converse

is not true—the central prediction is more specific than

multiphasic single-neuron responses. It is hypothesized

that the population neural state evolves according to dy-

namics of the form

ẋðt; cÞ ¼ f ðxðt; cÞÞ; ð2Þ

where f ( ) shows a large rotational component. A critical

feature of this model is that the dynamics f ( ) are the same

across all conditions. Thus, each condition is a different

neural trajectory in the same dynamical flow field. Al-

though many models imply multiphasic responses at the

level of single neurons, many fewer predict population-

level rotational dynamics that are consistent across condi-

tions. Below we illustrate why such a model might make

sense, given the empirical patterns of muscle activity.

MODEL AND NEURAL RESPONSE PATTERNS

A Basis Set for Muscle Activity? Motivating

a Dynamical Hypothesis

The basic features of the traditional model are fairly

intuitive: The factors that describe the neural state space

correspond to externally measurable parameters such as

direction or velocity. In contrast, the appeal of the dynam-

ical model is not immediately obvious; what could be the

mechanistic purpose of a neural state governed by inter-

nal dynamics (Eq. 2)? A possible answer presents itself if

we consider the patterns of activity that can be generated

by the traditional and dynamical models. The traditional

model generates pulses of activity, whereas the dynam-

ical model generates brief quasioscillatory patterns. Both

pulses and oscillatory patterns are potentially useful:

Each could constitute a set of building blocks (a “basis

set”) for outgoing commands.

To investigate the possible utility of an oscillatory basis

set, we simulated a dynamical model in which the state

space was greater than two dimensional, allowing for

more than one plane of rotation and thus more than one

frequency. Such a system produces a small basis set of

oscillatory patterns (Fig. 3A), and can do sowith any phase

and amplitude depending on the preparatory state. If the

output is a (fixed) sum of the resulting patterns, one then

has a mechanism for generating a range of output patterns.

We examined the patterns of muscle activity across

different reaches (Fig. 3B) and found that they could in-

deed be reconstructed (Fig. 3C) from a basis set of just

two underlying oscillations (four total dimensions plus

an additional dimension to capture offset). Oscillation

frequency and duration were fixed (and thus the dynamics

f ( ) in Eq. 2 were fixed); only phase and amplitude varied

across conditions (implied by the initial state x(0,c)). This

simple construction was sufficient to accurately repro-

duce muscle-like commands (Fig. 3C vs. 3B).

Quasioscillatory patterns are thus an effective basis set,

in agreement with a recent modeling study (Rokni and

Sompolinsky 2012). There are two further reasons to

suspect such a basis set might be used. First, a common

feature of large recurrent networks—even randomly con-

nected networks—is the presence of multiple oscillatory

“modes.” Network dynamics can, via training, be simpli-

fied to produce a small set of well-behaved output activ-

ities that are muscle-like (Schaffer et al. 2006; Sussillo

et al. 2012). Second, oscillatory activity is common

during movement in many species, not only during loco-

motion but sometimes during brief movements as well.
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Figure 1. Illustration of behavior for a reaching task, of the type
often used to study motor cortex. (A) Reaches were from a cen-
tral spot to a target. An example trajectory is shown. (B) Task
timeline. Target onset was separated from a go cue by a prepa-
ratory period. Movement onset occurred shortly (�300 msec)
after the go cue. Reaches were typically very brisk; in this case
lasting ,200 msec.
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For example, zebrafish larvae produce briefly oscillatory

swimming bouts (Orger et al. 2008). Thus, rhythmic ac-

tivity is a common motif across multiple motor systems

that use very different neural architectures. Given the ease

with which different neural systems (real and artificial)

produce oscillatory patterns, and given the empirical ef-

fectiveness of an oscillatory basis set in building muscle

activity, a seemingly straightforward hypothesis is that

such a mechanism might be at play during reaching.

It should be stressed that a quasioscillatory basis set is

not the only (or even necessarily the optimal) solution.

The generation of pulsatile patterns—as in the traditional

model—is also common across many motor systems and

could provide a basis set. And although the above argu-

ments may suggest a quasioscillatory set of basis patterns,

by no means do they necessitate that solution. It was

therefore an empirical question whether the data during

reaching resembled the traditional model, the dynamical

model, or neither.

Dynamical Model Responses Resemble

Neural Response

We recorded neural activity from motor and premotor

cortex during a variety of reaching tasks (Churchland et al.

2006; Kaufman et al. 2010). Neurons showed a broad

range of response patterns (Fig. 4) and rarely resembled

the predictions of the traditional model (Churchland and

Shenoy 2007; Churchland et al. 2010, 2012). There was

little evidence of a “preferred movement.” Indeed, the

threshold

target move onset

preparatory
activity

peri-movement
activity

go 200 msectarget go move onset

preparatory
activity

peri-movement
activity

x1

x 2

condition 25

condition 9

x1

x 2

condition
25

condition 9

threshold

condition 25

condition 9

A

B

D E
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Figure 2. Two simplified models of neural activity during reach generation. (A) Example reach trajectories (2 of 27 total conditions).
(B) Cartoon illustration of the traditional model showing the response of one model unit as a function of time for two conditions. The
red trace shows the response for the “preferred condition” (condition 9, a roughly rightward reach). (C ) Cartoon illustration of the
dynamical model, showing the response of one model unit as a function of time for two conditions. (D) Illustration of the traditional
model in state space. Each dimension (x1 and x2) captures one of the factors represented by the population. In this case x1 and x2

correspond to horizontal and vertical reach direction. Motion of the neural state during preparation is away from baseline, and this
expansion continues during movement. This expansion corresponds, at the single-unit level, to the development of a preference during
preparation that is heightened during movement. For example, a single unit whose response primarily reflects x1 would show a
rightward preference, as in B. (E) Illustration of the dynamical model in state space. The neural state moves away from baseline
during preparation, as with the traditional model. During reaching, the neural state rotates with time, tracing a circular trajectory. To
connect back to the single-unit level, note that a single unit whose response primarily reflects x1 would show an oscillatory pattern with
an ever-changing “preference,” as in C.
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condition that garnered the larger response was typically

different at different times during the trial (e.g., some-

times red traces are higher and sometimes green traces

are higher). Thus, individual-neuron responses do not par-

ticularly resemble the predictions of the traditional model.

We then compared neural responses with responses pre-

dicted by the dynamical model. Simulated neural respons-

es were based on the model in Figure 3A, which was

optimized to generate the empirical electromyography

(EMG). The response of each simulated unit was a ran-

domly weighted sum of the patterns present in the model,

plus a small amount of noise (Churchland et al. 2012). The

level of preparatory activity was determined by the initial

plateau (left side of Fig. 3A). This plateau of preparatory

activity is critical to the model: It sets the phase and am-

plitude of the subsequent oscillations (x(0,c) in Eq. 2). The

duration of simulated preparatory activity was set to

roughly match that seen for the neural responses.

Dynamical model responses showed a variety of mul-

tiphasic patterns that resembled those of cortical neurons

(Fig. 4). Preparatory activity was present, yet had an un-

clear relationship with the subsequent pattern of move-

ment activity. For the model this occurs because the

relationship between preparatory state and rotation phase

becomes clear only at the level of the population neural

state. In summary, the dynamical model, but not the tra-

ditional model, produces single-unit responses that re-

semble the data. Importantly the dynamical model units

in Figure 4 are not fit to recorded neurons; the resem-

blance naturally arises when the model is fit to the em-

pirical patterns of EMG (Fig. 3A). The next key question

was thus: Does the similarity between the data and the

dynamical model extend to the population level?

DYNAMICAL STRUCTURE IN THE

POPULATION RESPONSE

Model Predictions

The dynamical model makes three key predictions at

the population level. First, the population state should

evolve according to dynamics described by Equation 2,

which can be linearly approximated as

ẋðt; cÞ ¼ Mxðt; cÞ: ð3Þ

It is proposed that dynamics are very “smooth”: They

are similar across conditions and can thus be approximat-

ed with a single matrix M. The second prediction is that

the dynamics in question should have a large oscillatory/

fit to
EMG

r = 0.98

move onset 200 msec

EMG
(deltoid)

move onset 200 msec

m
od

e 
1

m
od

e 
2

x1

x2

x3

x4

200 msec
EMG

x2 + x3 =  fit  
move onset

A

B C

dynamical model ‘factors’

Figure 3. Constructing muscle activity from an oscillatory basis set. (A) The time-evolving factors proposed by the dynamical model.
The first pair of factors (x1 and x2) capture the two phases of a 2.8-Hz oscillation. The model employs both phases because it is the most
natural way for a dynamical system to generate an oscillatory response. The second pair of factors (x3 and x4) capture the two phases of
a 0.3-Hz oscillation. For both frequencies the oscillations are short-lived; the 2.8-Hz oscillation lasts only a little over one cycle and the
0.3-Hz oscillation lasts less than one cycle. The sum of factors x2 and x3 produces a pattern (thick red trace) that approximates the
empirical pattern of electromyography (EMG) recorded from the deltoid (thin red trace). Data is shown for one condition (9) of 27 total.
Oscillation phase and amplitude were set by the “preparatory state.” The preparatory state is reflected in the fact that the factors are
offset from baseline (dashed line) before the onset of pattern generation. For each condition we chose the preparatory state to produce
the phases and amplitudes that best fit the EMG. (B) EMG recorded from the deltoid for all 27 conditions. Each trace plots the intensity
of the muscle activity for one condition. Red-to-green coloring of the traces is used simply to allow the eye to follow individual traces.
(C ) Fits to the EMG via the dynamical model, as in A, for all conditions. Correlation between model fit and recorded EMG was 0.98.
(B,C, Adapted from Churchland et al. 2012.)
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rotational component: M should be fairly close to skew-

symmetric (M¼2MT). Thus, the fit to the data should be

almost as good if M is constrained to be skew-symmetric.

Third, it should be possible to directly view projections of

the data that reveal the rotational structure illustrated in

Figure 2E. If there exist factors x1 and x2 with the hypoth-

esized structure, then it should be possible to recover

those factors by taking an appropriately weighted sum

of the activity of all the neurons. Doing so should reveal

state-space patterns with clear rotations.

Before examining these predictions, we stress that the

use of a weighted sum to yield interpretable “factors” is

common in systems neuroscience (Cunningham and Yu

2014)—particularly when decoding represented parame-

ters. For example, in the traditional model, one can re-

cover a representation of reach direction by assigning

each neuron a pair of weights based on its preferred di-

rection. Thus, x1 (x2) would be the sum of the activities of

all neurons, weighted according to the degree to which

that neuron preferred rightward (upward) reaches. When

examining the predictions of the dynamical model, we

wished to accomplish something similar, but to recover

projections that might relate to rotational dynamics.

We used principle component analysis as a preprocess-

ing step and reduced the dimensionality of the data to a

few factors (typically six). We then fit the temporal evo-

lution of the data with Equation 3. Fit quality (R2) was

assessed using both an unconstrained matrix M, and a

matrix Mskew that was constrained to be skew-symmetric.

Finally, we recovered factors x1 and x2 via weights based

on the eigenvectors of Mskew (the jPCA method; Church-

land et al. 2012). We used the eigenvectors that corre-

sponded to the highest-frequency rotations. As a technical

aside, we used the eigenvectors of Mskew rather than M for

three practical reasons. First, we wished to test for the

presence of rotations in a subset of dimensions, even if

other dimensions contained other patterns. Second, Mskew

is “normal” and conveniently yields orthogonal eigen-

vectors. Third, in practice M and Mskew were typically

very similar for the neural data.

Rotations Are a Dominant Motif

in the Population Response

When applied to the population of dynamical model

responses (e.g., Fig. 4) the jPCA method accurately re-

covered the true factors (compare Fig. 5A,B). As expect-

ed, the quality of the dynamical fit (R2) was high and was

nearly as good when constrained to be purely rotational

(R2
skew). For the neural data (Fig. 5C,D) jPCA revealed a

similar rotational structure (Churchland et al. 2012). The

quality of the dynamical fit was high (although certainly

not as high as the idealized model) and was nearly as

good when constrained to be purely rotational. Rotation

phase and amplitude followed from the preparatory state

for both the model and the data. Both model and data

contained a second plane with lower-frequency rotations

(not shown, although see Fig. 7B,C below). Thus, the

three population-level predictions of the dynamical mod-

Single neuron responses Dynamical model responses

target move onset 200 msec

Figure 4. Example responses of real (left column) and simulated
units from the dynamical model (right column). Each subpanel
plots the response for one neuron/unit. Each trace plots the
response for one reach condition. Vertical scale bars indicate
20 spikes/sec. Traces are colored red to green for visualization.
So that the same color coding can be used for all panels, color-
coding is based on the initial strength of deltoid EMG, just
before movement onset. Note that although the real and simu-
lated data share a number of interesting general features, the
individual units/neurons are not meant to (and do not) map
directly onto one another. The model responses were never fit
to the neural responses—they are a consequence of how the
model reproduced the empirical EMG.
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el were observed: (i) the temporal evolution of the data

could be fit by a dynamical model, (ii) the fit was almost

as good when dynamics were constrained to be rotational,

and (iii) the population response could be projected to

reveal factors with clear rotations that followed from

the preparatory state.

The comparison between neural and model responses in

Figure 5 is an instance of “hypothesis-guided dimension-

ality reduction.” We hypothesized the presence of rota-

tional structure and designed a method ( jPCA) to seek

factors that might display such structure. But to what

degree might this constitute a self-fulfilling prophesy:

Would rotational structure be seen in any data with certain

basic surface-level features (e.g., smoothly changing mul-

tiphasic responses)? Might the traditional model also

show such rotational structure when analyzed via jPCA?

Dynamical model (true basis)

x1

x 2
condition 25

condition 9

x1

x 2

x1

x 2

x1

x 2

x1

x 2

x1

x 2
Rskew

2 = 0.93R2 = 0.98

31% var. capt.

Rskew
2 = 0.68

R2 = 0.75

34% var. 
capt.

Rskew
2 = 0.73

R2 = 0.77

26% var. 
capt.

Rskew

2 = 0.22R
2 = 0.44

27%
var. capt.

37%
var. capt.

Rskew
2 = 0.09

R2 = 0.44

Dynamical model (J3)

M1/PMd (dataset J3) M1/PMd (dataset J-array)

EMG (dataset J3) Velocity-tuned model (J-array)

A

C

E

B

D

F

Figure 5. Population structure for real and simulated data. All plots show 200 msec of the evolution of the neural state, beginning just
as the preparatory activity (dots) transitions to movement activity (subsequent trajectories). (A) The first two dimensions of the true
basis set used by the dynamical model. For simplicity two conditions are shown. (B) Projection, via jPCA, of the simulated population
response for the dynamical model. The model was fit to produce the EMG of the deltoid from data set J3, which was recorded across 27
conditions. For visualization, traces are colored based on the projection of the preparatory state onto x1. The jPCA method accurately
captures the underlying basis from A. Values of R2 and R2

skew indicate the fit quality provided by a linear model (unconstrained or skew-
symmetric respectively) for the two dimensions shown. The variance captured (var. capt.) indicates the total data variance that lies
within these two dimensions, as with PCA. (C ) jPCA projection of the population response for data set J3 (27 conditions). (D) jPCA
projection of the population response for data set J-array (108 conditions). (E) jPCA projection of the muscle population for data set J3.
(F) jPCA projection of the simulated population response for a traditional model in which neural responses were tuned for end point
position and upcoming peak speed during preparation and tuned for velocity and absolute speed during movement. Traditional model
responses were based upon the kinematics recorded for data set J-array. (All panels adapted from Churchland et al. 2012.)
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Rotational Structure Is Absent for Muscles

and Traditional Models

For most neural data sets we also recorded the corre-

sponding population of muscle responses. Single-muscle

responses were complex and multiphasic (e.g., Fig. 3B)

much like single-neuron responses. Single-muscle re-

sponses varied smoothly across time and conditions,

much like single-neuron responses. Yet the muscle pop-

ulations did not contain factors with strong rotational

structure. Projections of the EMG population (Fig. 5E)

often contained looping trajectories, but these did not

travel in a consistent direction: The circular flow of

some conditions/times was counteracted by a different

flow for other conditions/times and was thus inconsistent

with the dynamical model. In agreement, the overall

dynamical fit was weaker for the muscle population

than for the neural populations, (R2 ¼ 0.44 vs. 0.75 and

0.77) and suffered more when constrained to be purely

rotational (R2
skew ¼ 0:22 vs. 0.68 and 0.73). Thus, it is not

the case that any population of complex responses will

show rotational structure; muscle responses share most

surface-level features with the neural data yet did not

show consistent rotations. This relates to a key point to

which we return below: Although the goal of the dynam-

ical model is to produce muscle activity, the model con-

tains multiple patterns other than the final output, and

model neurons are therefore not expected to appear

“tuned” for muscle activity.

We also simulated population responses for traditional

models where activity is a function of externally measur-

able parameters (Eq. 1). These population responses did

not show strong rotational structure (Fig. 5F), but instead

tended to be dominated by the expansion of the neural

state. This was true for both simple versions of the tradi-

tional model (tuned for reach end point during prepara-

tion and reach velocity and speed during movement) and

for more complex versions that included tuning for posi-

tion, acceleration, and jerk (Churchland et al. 2012). This

analysis acts as a further control: Again, it is not the case

that jPCA reveals rotations for most any data set. More

importantly the analyses in Figure 5 reveal that a basic

feature of the population response—rotations that follow

from the preparatory state—is consistent with the dynam-

ical model but not with a pure muscle-tuning hypothesis

or with the traditional model.

In principle, it might be possible to adapt traditional

models to produce rotations. For example, a model tuned

purely for horizontal position and velocity would produce

a partial rotation in state space, if those representations

were separable into two roughly orthogonal factors. A

more extended rotation could result from a representation

of acceleration and jerk. Yet the neural data contain fea-

tures that are not naturally accounted for by such models.

First, rotations during movement follow naturally from

the preparatory state, something that would not be true

if plotting a “jerk representation” versus an “acceleration

representation.” Second, rotation frequency was �1.5–2

Hz, considerably slower than the profile of acceleration

or jerk. Some movements had durations of ,150 msec,

which would yield a triphasic jerk pattern at �10 Hz—

much faster than observed. Third, the observed rotation

frequency did not depend on reach speed/movement

duration (Churchland et al. 2012) in opposition to the

expectation if jerk or acceleration were being represented.

Fourth, rotation direction was the same regardless of

whether the actual reach was straight, curved clockwise,

or curved counterclockwise. These features all emerge

naturally from the dynamical model. It might be possible

to adapt the traditional model to also account for these

features, but it is not clear how to do so.

TRADITIONAL AND DYNAMICAL MODELS

SUGGEST DIFFERENT EXPLANATORY

APPROACHES

Interpretation of “Represented” Parameters

The traditional model assumes that factors constitute

“representations” of parameters such as reach velocity or

speed (e.g., Pearce and Moran 2012). A neuron’s re-

sponse should therefore be related to the parameters

with which it covaries most strongly. For example, if a

given neuron’s response correlates weakly with muscle

activity and strongly with reach velocity, then that would

be taken as evidence that the response relates principally

to velocity. Under the dynamical model such inferences

are fraught. Consider four hypothetical neurons whose

responses respectively reflect x1 through x4 from the mod-

el in Figure 3A. Note that x3 and x4 resemble the pattern of

EMG rather weakly: x3 resembles a low-pass filtered ver-

sion of velocity, and x4 resembles position. A general

feature of the dynamical model is that individual basis

elements may often weakly resemble the final output and

may appear to represent other incidental factors. This can

be seen as the extension, into the temporal domain, of the

observation that in a highly redundant system a neuron’s

response need not match its causal impact on the final

output (Baraduc et al. 2001; Todorov 2002; Schieber and

Rivlis 2007).

The difference in the interpretations suggested by the

traditional and dynamical models is heightened if there

are many observed response patterns. Traditionally, a

plethora of patterns suggests the representation/control

of many parameters (e.g., Ashe and Georgopoulos

1994; Fu et al. 1995; Wang et al. 2007; Pearce and Moran

2012). Under the dynamical hypothesis, a plethora of

patterns suggests a rich basis set (Fetz 1992; Churchland

and Shenoy 2007; Churchland et al. 2010, 2012; Sussillo

et al. 2012; Shenoy et al. 2013; Hennequin et al. 2014).

Interpretation of Why “Tuning” Varies

with Other Factors

Neural responses are often analyzed in terms of “tun-

ing”: the manner in which firing rates differ across con-

ditions. Under the traditional framework, tuning is

fundamental and reflects the hypothesized relationship

between factors and represented parameters. A large lit-

erature has sought to identify those parameters to which
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tuning relates most reliably, on the assumption that those

are the parameters that are truly represented. For example,

an extensive series of elegant experiments from multiple

laboratories has asked whether tuning is constant with

respect to Cartesian reach direction or with respect to

other factors such as force and/or muscle activity (for

review, see Scott 2008; Kalaska 2009; Reimer and Hat-

sopoulos 2009). Almost universally, such experiments

reveal that tuning is not constant with respect to any of

the proposed parameters. Tuning either varies idiosyn-

cratically or undergoes “intermediate” shifts. More gen-

erally, tuning for a given factor such as direction is rarely

constant with respect to other factors such as reach speed

(Churchland et al. 2006; Churchland and Shenoy 2007).

For example, Figure 6A shows the mean preparatory re-

sponse of a neuron whose tuning for each direction de-

pended on reach distance (top and bottom panels). This

might initially seem troubling. Is the underlying represen-

tation very complicated? Are responses simply “messy”

and unreliable?

Under the dynamical model, inconstant tuning is ex-

pected. “Tuning” is merely a consequence of different

movement conditions requiring the elements of the basis

set to be modulated differently. For example, every trace

in Figure 3C was built from the same oscillatory basis set,

but with different phases and amplitudes. Because phase

and amplitude depend on the preparatory state (Fig. 2E),

the preparatory state necessarily varies across conditions.

However, such tuning is not constant with respect to other

factors. One example is shown in Figure 6B: The model

unit changes its preparatory tuning with distance, much as

has been regularly observed in the data. The dynamical
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Figure 6. Both real neurons and dynamical model units undergo idiosyncratic changes in the preferred direction as a function of reach
distance and as a function of time. (A) The average preparatory firing rate of a single neuron as a function of reach direction, recorded
during a center-out reaching task. Error bars give the SEM. Fits use a cosine-tuning model employing both the fundamental (unimodal
tuning) and the first harmonic (bimodal tuning). (B) Similar plot but for the preparatory activity of a unit simulated according to the
dynamical model, which was trained to produce the EMG of the deltoid. (C ) Quantification of the degree to which neurons “preferred”
the same conditions during the movement as they did during the preparatory period. The correlation between preparatory and peri-
movement tuning is plotted as a function of time. All correlations are between the time shown and a reference time during the middle of
the preparatory period. The response of a given neuron at the reference time is a vector containing the firing rate for every condition. For
each analyzed time, we correlated the vector of firing rates at that time with the vector at the reference time. This correlation was
averaged across all neurons within the data set. Analysis was restricted to neurons robustly tuned during both epochs. Correlations are
initially near unity, in agreement with the observation that tuning is stable during the preparatory period. Around 175 msec before
movement onset the average correlation began to decrease sharply, indicating that the preference during the movement typically bore
little resemblance to that during the preparatory period. (D) Same analysis as above but for data sets simulated using the dynamical
model. (C, Adapted from Churchland et al. 2010.)
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model thus provides a rather different account from that

suggested by the traditional model, where preparatory

tuning constitutes a representation of factors such as reach

direction or target location (e.g., Shen and Alexander

1997; Pearce and Moran 2012). For the dynamical model

“tuning” will rarely have a consistent surface-level rela-

tionship with any movement parameter, even those di-

rectly controlled by the network. These observations

extend an important fact previously noted in the litera-

ture: Any system that controls movement will necessarily

have activity that varies across conditions, resulting in

directional “tuning” that may or may not be consistent

(Mussa-Ivaldi 1988; Fetz 1992; Sanger 1994; Todorov

2000, 2002; Cisek 2006b; Ajemian et al. 2008; Kalaska

2009; Reimer and Hatsopoulos 2009; Lillicrap and Scott

2013).

Interpretation of Why “Tuning”

Changes with Time

A striking aspect of most single-neuron responses is

that tuning changes with time (in addition to the tuning

inconstancy across conditions, as noted above). The “pre-

ferred condition” during the preparatory period tends not

to agree with the preferred condition during movement

(Crammond and Kalaska 2000; Churchland et al. 2010).

Furthermore, the preferred condition early in the move-

ment tends not to agree with the preferred condition later

in the movement (Sergio and Kalaska 1998; Churchland

and Shenoy 2007; Hatsopoulos et al. 2007). For example,

in Figure 4 the red-to-green ordering of traces is not pre-

served as time passes. Figure 6C plots the average corre-

lation of “tuning” between each time and a reference time

during the preparatory interval. The correlation plummets

just before movement begins and approaches zero by the

time of movement onset. Thus, the cartoon neuron illus-

trated in Figure 2B is rarely observed. Under the tradition-

al model these findings suggest that different movement

features are represented in different ways at different times

(e.g., Fu et al. 1995; Pearce and Moran 2012). An alter-

native explanation has been that consistent tuning is nei-

ther expected nor desired of a system whose function is to

generate and control movement (Fetz 1992; Todorov

2000; Cisek 2006b; Kalaska 2009; Reimer and Hatsopou-

los 2009; Lillicrap and Scott 2013; Shenoy et al. 2013).

The dynamical model accords with this latter inter-

pretation and supplies a straightforward explanation for

tuning that varies with time. The oscillatory basis intrin-

sically results in a “preference” that is always in flux. For

example, in Figure 2C the red trace is sometimes higher

and the green trace is sometimes higher. Like the data, the

model also shows a declining correlation between prepa-

ratory and movement-period “tuning” (Fig. 6D).

Projections of the Population

Different perspectives on tuning lead to different per-

spectives regarding how to summarize the population

response. In the traditional view, underlying factors relate

to represented movement parameters and should be

recovered via reference to those parameters. As one ex-

ample, a two-dimensional population vector can be con-

structed by weighting each neuron’s preferred direction

by its response and taking the vector sum. More formally,

assume the encoding model:

r ¼ Dx,

where r is an n � 1 vector of neural responses, x is a 2 �
1 vector of factors describing horizontal and vertical ve-

locity, and D is an n � 2 matrix of preferred directions.

The underlying factors in x can be extracted via

x ¼ Dyr,

where D† is the pseudoinverse of D. When D has col-

umns that are close to orthonormal, this can be approxi-

mated using the transpose:

x ¼ DT r:

A population vector produced via this method is shown

in Figure 7A for 28 reach conditions (7 directions � 2

distances � 2 reach speeds). This view captures a con-

siderable proportion of the overall variance (20%). Still,

although an expansive component is present, it is some-

what disorganized and there is little clear relationship

between preparatory and movement activity across con-

ditions. Thus, although Figure 7A is a valid view of the

population response, one wonders whether other reason-

able views also exist and might be at least as informative.

Under the dynamical perspective, the most revealing

projections of the population will be those that capture the

dynamical relationship between factors. One particularly

desires projections in which a flow field describes the

evolution of the neural state. jPCA pursues this end by

fitting with a dynamical model. The data are then project-

ed via

x ¼ Vr;

where each row of the matrix V is an eigenvector of the

matrix that fit the dynamics. The number of rows of V can

be chosen based on the number of eigenvectors with large

corresponding eigenvalues. We found that the data typi-

cally contained two to three planes of rotations (4–6 total

dimensions) as illustrated in Figure 7B,C (same data set

as in Fig. 7A). The first two planes capture 56% of the

variance and reveal rotations at different frequencies.

Such structure accords with the dynamical model in

which a basis set is built from a small handful of oscilla-

tory modes

Pitfalls of the “Population PSTH”

It should be stressed that the three views in Figure

7A–C are all linear transformations of the underlying

population response. One might prefer one view to
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another depending on one’s hypothesis and on the struc-

ture and variance captured by that view. Yet all are valid

views of the data, and each reveals response aspects not

captured by the others. However, there exist common

analysis methods, often inspired by the traditional model,

that will not in general produce valid projections of the

population response. For example, it is common to sum-

marize the temporal evolution of the population response

by computing the “population PSTH (peristimulus time

histogram)”: the average activity of every neuron, each

for its own “preferred” condition. Thus, the activity of a

rightward-preferring neuron for a rightward reach is av-

eraged with the activity of an upward-preferring neuron

for an upward reach. This procedure is justified only if

the tuning model is accurate and behavior is symmetric

(e.g., if every reach trajectory is similar excepting the

direction itself ). Otherwise the resulting view is not a

projection of the population response and may be difficult

to interpret.

To illustrate, Figure 7D plots the population PSTH

based on the preferred condition during the preparatory

period. The red trace is the average response of all neurons

for their most-preferred condition. The green trace corre-

sponds to the least-preferred condition, and dark traces

show intermediate preferences. The population PSTH

shows a small peak before movement onset, after which

the four traces become similar and relatively flat. The plot

thus fails to reflect the fact that most neurons are strongly

“tuned” and responsive at this time. That structure is lost in

the population PSTH because the preferred condition dur-

ing movement and preparation are weakly correlated (Fig.

6C). The population PSTH looks very different if the pre-

ferred condition is measured later, during the movement

(Fig. 7E). Indeed, peaks in tuning can be produced at

target move onset

D E
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34% var. 
capt.

x1

x 2

20% var. 
capt.

A B

target move onset 200 msec

x1 via jPCA

F G

x1

x 2

x3

x 4

C

22% var. 
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Figure 7. Various views of the population response. For state-space plots (A–C) all conventions are as in Figure 5. (A) The population
vector for a data set which was recorded during straight reaches to seven radially arranged targets at two different distances and two
reach speeds (data from monkey B). (B) The first pair of dimensions of the jPCA projection for that same data set. (C) The second pair
of dimensions of that jPCA projection. (D) Population peristimulus time histograms (PSTHs) based on the preferred condition during
the preparatory period (monkey J). Traces plot the average firing rate (across all neurons) for the condition with the strongest
preparatory response (red), the condition with the weakest preparatory response (green), and two intermediate conditions (intermediate
shades). Such conditions were found separately for each neuron. Responses were then averaged after normalizing each neuron’s
activity by its maximum rate (results were similar without normalization). The resulting population PSTH displays very little
movement period activity, even though such activity was strongly present. Indeed, analysis was restricted to include only neurons
with robust preparatory tuning and robust movement-period tuning. (E) A similar population PSTH but with the preferred condition
found during the movement period. Despite being based on exactly the same data as in D, the population PSTH now looks very
different: There appears to be little preparatory activity. (F) First dimension (x1) of the projection found via jPCA for data set J3,
plotted as a function of time. Each trace corresponds to one condition. (G) As in F, but for the second jPCA dimension (x2). (B, Adapted
from Churchland et al. 2012.)
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different times depending on exactly when the preferred

condition was assessed. Thus, the seemingly sensible and

oft-used approach of averaging responses based on their

preferences can produce tautological conclusions: A

population will appear strongly tuned at a particular

time simply because it was sorted accordingly.

The dynamical perspective suggests alternative ap-

proaches for examining the population response versus

time. For example, one can produce “factor PSTHs” in

which each factor is plotted versus time across all condi-

tions (Fig. 7F,G). These projections of the neural data

reveal response structure that is lost in the traditional

population PSTH. In particular, these projections reveal

that a rough plateau of preparatory activity leads to a

strongly oscillatory response during the movement. This

pattern—also often observed at the single-neuron level—

is lost in the population PSTH.

The Dynamical Model: Toward

a Mechanistic Hypothesis

Under the dynamical perspective, the “meaning” of the

neural state can seem abstract because most factors do not

relate to externally measurable parameters. However, the

dynamical perspective provides a natural language for

expressing high-level mechanistic hypotheses. The mod-

el in Figure 3A is not a circuit-level model, but does

propose a mechanism by which the circuit as a whole

might perform its function. Dynamical hypotheses can

often be succinctly expressed in state space, where they

become hypotheses regarding the flow field (Fig. 8B)—

that is, the influence of factors on each other. Because

many of those factors have no external meaning, they can

be interpreted in terms of their mechanistic roles in pro-

ducing the final output. This style of explanation is often

useful even when the underlying connectivity is known,

as is the case for many model networks (Sussillo and

Barak 2013). Furthermore, this approach promotes the

generation of hypotheses that might otherwise lack a clear

language. Two examples follow.

A long-standing question has been how preparatory

activity avoids causing movement. For the traditional

model, it is usually suggested that preparatory activity

lies below threshold or is held at bay by an inhibitory

gate. The dynamical model suggests a different hypoth-

esis: that preparatory activity lives in the null space of the

Movement
Preparation

Go cue

x1

x 2

x1 - x2 x 1+
 x 2

x2 x 1

x3

B C

A

x1

x 2

Figure 8. Dynamical hypotheses expressed in state
space. (A) Illustration, using data, of the “null space
hypothesis.” The projection is of the population from
data set J-array (as in Fig. 5D but with slightly different
preprocessing as it was computed for a different study).
Preparatory activity is shown in blue; the go cue was
given at the time of the gray circles, after which the
green traces reveal the trajectory of movement-period
activity. The red ellipse shows two standard deviations
of the covariance ellipse describing the spread of pre-
paratory activity. (B) Hypotheses regarding the interac-
tions between factors can be expressed as flow fields in
state space. (C ) Illustration of how a factor might play a
“higher-level” role. In this case, a translation in direc-
tion x3 could bring the neural state into a region of
strong oscillatory dynamics, and thus initiate pattern
generation. In this case, one dimension (x3) would be
used to recruit pattern generation in a space spanned by
other factors (x1 and x2). (A, Adapted from Kaufman
et al. 2014.)
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dimensions that map to output muscle activity. This is

indeed true of the dynamical model outlined in Figure

3. Preparatory activity is present in the model—no factor

is at baseline before the oscillation begins—and plays the

role of setting the phase and amplitude of the subsequent

oscillation. Yet preparatory activity cancels when the

factors are summed to produce the output. Thus, the out-

put is virtually identical across conditions during the pre-

paratory period (Fig. 3C) even though most units have

preparatory activity (Fig. 4). Figure 8A illustrates a sim-

ple view of this proposal overlaid on a projection of

neural data. If preparatory activity (gray dots) is primarily

extended in the x1 – x2 direction then it has little projec-

tion onto the x1 þ x2 direction. A downstream target driv-

en by both x1 and x2 will mostly ignore preparatory

activity. Such an effect is indeed present: Those dimen-

sions that most resemble muscle activity have recently

been shown to have the least preparatory activity (Kauf-

man et al. 2014).

A second outstanding question regards the neural

events that trigger movement onset. If activity does not

rise past a threshold (as in Fig. 2B), then what triggers

movement onset? The model in Figure 2C,E assumes—

and the data confirms—the sudden onset of rotational

dynamics just before movement onset. We recently hy-

pothesized (Kaufman et al. 2013) that this sudden change

in dynamics may be driven by a large overall translation

in state space (Fig. 8C). This hypothesis is plausible

because local dynamics could be very different in dif-

ferent regions in state space, as suggested by recent

modeling (Sussillo et al. 2012). By exploiting such a

mechanism, the circuit could control the neural dynamics

that drive movement. Hypotheses such as this are readily

conceived in a dynamical framework, but difficult to ex-

press otherwise.

CONCLUSIONS

We compared predictions of two idealized models. We

considered a traditional model, in which a movement

preference appears during the preparatory period and be-

comes stronger as movement is generated. The basic re-

sponse features of this model were at odds with the

patterns observed in single-neuron responses (Fig. 4). In

contrast, a dynamical model produced reasonably realis-

tic single-neuron responses. At the population level, the

dynamical model predicted the existence of rotations in

state space. Such rotations were also prevalent in the neu-

ral data. This prevalence of rotations was not a conse-

quence of the application of the jPCA method: That

same method revealed weak rotational tendencies in the

population of muscle responses and in simulated popula-

tion responses of traditional models. More generally, the

linear dynamical fit to the neural data was dominated by a

rotational component, something not true for the tradi-

tional model or the muscle population.

The dynamical model naturally accounts for some

seemingly confusing response properties, including the

tendency of neurons to display “tuning” that changes with

time and with other parameters such as distance and

speed (Fig. 6). That said, the dynamical model is current-

ly quite incomplete, and the instantiation shown in Figure

2E and Figure 3A is highly idealized. Future work will

have to explain how similar dynamics can be instantiated

in neural networks (Schaffer et al. 2006; Sussillo et al.

2012; Hennequin et al. 2014), how dynamics are “turned

on” at the right time, the degree to which dynamical

motifs other than rotations are important, and the degree

to which dynamics are driven by internal versus feedback

connections. It also remains an open question why rota-

tions are a dominant motif when other basis sets are pos-

sible. One possibility is that neural mechanisms for

locomotion were co-opted, on an evolutionary timescale,

to produce other kinds of motion (Rokni and Sompolin-

sky 2012). Alternatively, an oscillatory basis set may be

used simply because it is easily generated and provides a

robust solution (Sussillo et al. 2012).

In summary, although the dynamical model might ini-

tially seem less intuitive, it accounts for the data more

successfully than the traditional model. The dynamical

model explains a number of features of the data that oth-

erwise seem troublesome or “messy.” The model pro-

vides a high-level mechanistic explanation for how the

system might generate the desired outputs: The output is

hypothesized to be the sum of a basis set of patterns that

can be generated via internal dynamics. In this view,

preparatory activity is truly “preparatory”: Its goal is to

set the initial state of those dynamics, so that the basis set

is recruited appropriately. The subsequent patterns of

movement activity may appear complex, but they have

a straightforward goal: to provide the building blocks of a

temporally structured output.

The above hypothesis is readily extensible. For exam-

ple, the true basis set is surely more complex than two

simple oscillations. Indeed, the data often contain three

planes of rotation and significant nonrotational compo-

nents as well. Thus, rotations may be a dominant motif

but they are not the only motif. Furthermore, although an

oscillatory basis set will be appropriate for many move-

ments (e.g., those involving multiphasic EMG), other

bases will presumably be appropriate for other classes

of movement. Indeed, the heart of the dynamical hypoth-

esis is not the particular basis set being used, but the

broader strategy at play. This includes three key elements:

the presence of more neural dimensions than output di-

mensions, dynamics that govern the evolution of the neu-

ral state within those dimensions, and preparatory activity

that plays the role of initializing the dynamics. The

dynamical view provides the language and tools for ex-

ploring how variations upon this theme may allow motor

cortex to generate different classes of movement.
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Bastian A, Schöner G, Riehle A. 2003. Preshaping and contin-
uous evolution of motor cortical representations during move-
ment preparation. Eur J Neurosci 18: 2047–2058.

Cheney PD, Fetz EE. 1980. Functional classes of primate corti-
comotoneuronal cells and their relation to active force. J Neu-
rophysiol 44: 773–791.

Churchland MM, Shenoy KV. 2007. Temporal complexity and
heterogeneity of single-neuron activity in premotor and motor
cortex. J Neurophysiol 97: 4235–4257.

Churchland MM, Santhanam G, Shenoy KV. 2006. Preparatory
activity in premotor and motor cortex reflects the speed of the
upcoming reach. J Neurophysiol 96: 3130–3146.

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, She-
noy KV. 2010. Cortical preparatory activity: Representation
of movement or first cog in a dynamical machine? Neuron
68: 387–400.

Churchland MM, Cunningham JP, Kaufman MT, Foster JD,
Nuyujukian P, Ryu SI, Shenoy KV. 2012. Neural population
dynamics during reaching. Nature 487: 51–56.

Cisek P. 2006a. Integrated neural processes for defining poten-
tial actions and deciding between them: A computational
model. J Neurosci 26: 9761–9770.

Cisek P. 2006b. Preparing for speed. Focus on “Preparatory
activity in premotor and motor cortex reflects the speed of
the upcoming reach”. J Neurophysiol 96: 2842–2843.

Crammond DJ, Kalaska JF. 2000. Prior information in motor
and premotor cortex: Activity during the delay period and
effect on pre-movement activity. J Neurophysiol 84: 986–
1005.

Cunningham JP, Yu BM. 2014. Dimensionality reduction for
large-scale neural recordings. Nat Neurosci 17: 1500–1509.

Erlhagen W, Bastian A, Jancke D, Riehle A, Schöner G. 1999.
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