
ARTICLE

Different population dynamics in the
supplementary motor area and motor
cortex during reaching
A.H. Lara1, J.P. Cunningham 2,3,4,5 & M.M. Churchland1,3,4,6

Neural populations perform computations through their collective activity. Different com-

putations likely require different population-level dynamics. We leverage this assumption

to examine neural responses recorded from the supplementary motor area (SMA) and

motor cortex. During visually guided reaching, the respective roles of these areas remain

unclear; neurons in both areas exhibit preparation-related activity and complex patterns of

movement-related activity. To explore population dynamics, we employ a novel “hypothesis-

guided” dimensionality reduction approach. This approach reveals commonalities but also

stark differences: linear population dynamics, dominated by rotations, are prominent in motor

cortex but largely absent in SMA. In motor cortex, the observed dynamics produce patterns

resembling muscle activity. Conversely, the non-rotational patterns in SMA co-vary with cues

regarding when movement should be initiated. Thus, while SMA and motor cortex display

superficially similar single-neuron responses during visually guided reaching, their different

population dynamics indicate they are likely performing quite different computations.
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A basic goal of motor physiology is to characterize cortical
responses during voluntary movement. Characterization
requires identifying parameters with which neural activity

covaries: e.g., muscle activation, hand velocity, or higher-order
features1–3. Yet neural activity contains structure beyond that
reflecting movement parameters4–10, including structure reflect-
ing dynamics that generate and control movement6,7,11–14. Here
we consider the supplementary motor area (SMA) and motor
cortex, and ask whether they obey similar or different population-
level dynamics. It is hypothesized that SMA is specialized for
sequences and/or internally initiated movements15–25. SMA is
nevertheless active during single movements26, including exter-
nally prompted movements27–32. The relative roles of SMA and
motor cortex during non-sequential movements thus remain
uncertain (for review see ref. 17). There exist at least three pos-
sibilities. First, SMA and motor cortex may perform redundant
computations. By analogy, the frontal eye fields and superior
colliculus have different specializations, but respond similarly
during simple saccades33. Second, SMA and motor cortex may
process different kinds of information, yet still perform compu-
tations subserved by similar dynamics. This could be consistent
with the proposal that different cortical areas perform a canonical
operation on different inputs34,35. Third, SMA and motor cortex
may perform very different computations via different classes of
dynamics.

Known differences between SMA and motor cortex do not
resolve these possibilities. Anatomy suggests parallel com-
plementary contributions36, but that is consistent with either
different or similar computations. In support of a higher-order
role for SMA, SMA facilitates muscle activity less strongly37, is
less responsive to proprioceptive input26,38, is more responsive
during ipsilateral arm movements26, displays signals reflecting
movement outcome39, and contributes to learning between
movements40. Yet during standard visually guided movements,
aspects of SMA and motor cortex responses are extremely similar,
suggesting that they “operate in parallel”21 and may make largely
redundant contributions.

We addressed the relative contributions of SMA and motor
cortex by examining the population-level dynamics that pre-
sumably subserve network computations. This comparison is
aided by recent characterizations of motor cortex dynamics.
During reaching, the motor cortex population displays a “central
motif” composed of two aspects: a condition-invariant shift in
state5 immediately followed by state trajectories following rota-
tional dynamics6,12,41. This same motif is naturally displayed by
network models trained to generate muscle activity patterns42.
For such models, the central motif reflects the underlying com-
putation. The condition-invariant shift initiates movement by
bringing the state to a region where rotational dynamics dom-
inate. The resulting oscillatory patterns form a basis for multi-
phasic muscle commands. Rotational dynamics, related to quasi-
periodic sub-movements, have also been observed in LFP43.
Given the proposed connections between dynamics and function,
the central motif represents a natural point of comparison.

We recorded neural responses from SMA and motor cortex
while monkeys executed reaches to radially arranged targets.
When examined using the population vector and population
PSTH, SMA and motor cortex showed similar structure, includ-
ing preparatory and movement-related activity that covaried with
reach direction. To examine dynamics, we employed a novel
“hypothesis-guided” dimensionality reduction (HDR) approach
that translates a hypothesis into a cost function. Our cost function
sought projections where some dimensions capture a condition-
invariant shift in state while other dimensions capture trajectories
described by generic linear dynamics.

Both SMA and motor cortex displayed a large, similarly
organized, condition-invariant shift in population state just
before movement initiation. Thus, the first aspect of the central
motif was almost perfectly shared between the two areas, possibly
constituting a shared signal related to movement initiation5. Yet
in terms of dynamics, SMA and motor cortex were quite different.
SMA activity was not well described by linear dynamics, dis-
played weak rotational structure overall, and lacked the 1.5–3 Hz
rotations previously reported in motor cortex. In contrast, HDR
identified multiple dimensions where motor cortex activity
obeyed approximately linear dynamics. Motor cortex dynamics
were dominated by rotations, even though HDR did not speci-
fically seek rotations. Rotations occurred in the 1.5–3 Hz range
and produced response features matching multiphasic aspects of
muscle activity. Although SMA lacked the clear dynamical
structure found in motor cortex, it contained a complementary
type of information: SMA activity co-varied with the “higher-
level” task constraints that determined when movement could be
initiated.

In summary, only in SMA did activity vary strongly with
higher-level task requirements. SMA and motor cortex both
shared a large signal previously shown to be temporally locked to
movement initiation. Finally, only motor cortex showed strong
rotational dynamics. These different dynamics, and the different
types of information carried by neural activity, argue that SMA
and motor cortex are performing very different computations.

Results
Task. Two monkeys (Ba and Ax) executed radial reaches in eight
directions across three contexts: cue-initiated, self-initiated, and
quasi-automatic. These contexts differed in the task requirements
governing how and when movement should be initiated. The cue-
initiated context employed the standard instructed-delay para-
digm: a randomized delay period (0–1000ms) separated target
onset from an explicit go cue. In the self-initiated context,
monkeys were free to reach upon target presentation, but waiting
longer yielded larger rewards up to a limit at 1200 ms. The quasi-
automatic context was similar to the cue-initiated context, but the
go cue was the onset of target motion along a radial path toward
the screen’s edge. This context evoked low-latency reaches that
intercepted the target mid-flight. Target and central touch-point
color (red, blue, or yellow) cued the context. Trials were inter-
leaved. Reaches had similar trajectories across contexts (Fig. 1a)
but tended to be slightly faster for the quasi-automatic context
(Fig. 1b, yellow).

In a separate study44, we exploit these contexts to examine
preparatory neural events in motor cortex. In the present study,
we compare movement-related dynamics between areas. Given
this goal, the advantage of different contexts is that they elicit
responses across a greater range of situations—including situa-
tions that may differentially engage SMA. We analyzed only trials
with sufficient time, between target and movement onset, for
clear preparatory activity to be established. This allowed analysis
to concentrate on movement-related dynamics. For cue-initiated
and quasi-automatic contexts, we analyzed trials with delays
>400 ms. For the self-initiated context, the monkeys’ behavior
provided the desired separation.

Neural and muscle recordings. We recorded neural responses
from SMA (141 and 186 neurons for monkey Ba and Ax) and
motor cortex (129 and 172 neurons). Recordings used single
electrodes or 24-channel linear electrode arrays. Recordings were
made from regions where electrical stimulation produced arm
movements. Figure 1c illustrates where electrode penetrations

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05146-z

2 NATURE COMMUNICATIONS |  (2018) 9:2754 | DOI: 10.1038/s41467-018-05146-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


entered (Supplementary Fig. 1 shows structural MRI). For SMA,
nearly all recordings were made relatively deep, from the medial
wall. For motor cortex, we recorded from sulcal primary motor
cortex, surface primary motor cortex and the immediately adja-
cent aspect of caudal PMd. Across these recordings we observed
the expected gradient of stronger preparatory activity on the
surface versus sulcus. Yet this tendency was far from complete
and responses formed a continuum with no noticeable dis-
continuity with location. We thus analyzed primary and pre-
motor cortex recordings together as a single motor cortex
population. This is consistent with our prior finding that primary
and premotor cortex display similar dynamics when analyzed
separately or together6.

Spike-trains during a target-locked epoch and a movement-
locked epoch were concatenated (Fig. 1d, e; gray circles indicate
concatenation time) allowing computation of an across-trial firing
rate that spans both events with a representative separation
(traces at bottom of each panel). This unified rate was useful for
visualizing preparatory and movement-related events together.
However, all analyses of dynamics focus on the movement-
aligned epoch, after the time of concatenation. Muscle activity
was recorded percutaneously from the major muscles of the
upper arm (13 and 10 recordings for monkey Ba and Ax). We
employed the standard technique of rectifying the voltage traces,
which provides a net measure of the activity of many motor units.
The average response of a given muscle for a given condition
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Fig. 1 Illustration of behavior and physiological recordings. a Average reach trajectories for the eight directions and three contexts. Red, blue and yellow
traces show average hand position during curing cue-initiated, self-initiated, and quasi-automatic reaches. Traces are shaded from dark to light based on
reach direction. Red traces are dashed to allow visualization of blue traces with which they often overlap. Data shown are for monkey Ba, and were similar
for monkey Ax. Star indicates the reach direction for which neural/muscle data are shown in panel (d). Scale bar shows 2 cm. b Average hand-velocity
profiles corresponding to the trajectories in panel (a). Scale bar shows 1 m/s. c Reconstructions of surface landmarks based on MRIs (see Supplementary
Figure 1 for example MRI sections). Shaded regions indicate where penetrations entered cortex, and are shaded darker to indicate where recordings
included deeper locations. Scale bar shows 5mm. d Raster plot of spikes recorded from one SMA neuron for one reach direction during the quasi-
automatic condition. Data in this and subsequent panels are for monkey Ax. Data to the left of the gray symbol are aligned to target onset (t) and data to
the right are aligned to movement onset (m). Filtering and averaging of spike-trains yields a smooth firing rate versus time (black trace) that interpolates
across the concatenation at the time indicated by the gray symbol. Filtering used a narrow (20ms) Gaussian to ensure high-frequency aspects of the
response were not lost. e Same as in d but for a neuron recorded from motor cortex. f Similar to d and e but for EMG recorded from the medial deltoid.
Voltage traces show a mixture of discrete and (especially during movement) overlapping events. Discontinuities resulting from concatenation of target-
locked and movement-locked data are small and barely visible. Rectification, filtering and averaging produces a continuous trace summarizing average
EMG intensity (magenta trace)
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(Fig. 1f, magenta trace) was then computed just as for the
neurons.

On average, firing rates were higher in motor cortex: peak
firing rate averaged 75 and 77 spikes/s (monkey Ba and Ax)
versus 43 and 53 spikes/s for SMA. Individual-neuron firing rate

estimates thus tended to be slightly noisier for SMA. Otherwise,
single-neuron responses were in many ways similar (Fig. 2a, b).
For both areas, firing rates varied with reach direction before and
during movement (darker/lighter traces correspond to leftwards/
rightwards reaches). During movement, responses often exhibited
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Fig. 2 Example responses of single neurons and muscles. a Example responses of five neurons recorded from SMA. Each colored trace plots the trial-
averaged firing rate for one condition, computed as illustrated in Fig. 1. Red, blue, and yellow traces correspond to the three contexts. Darker/lighter traces
are for reaches to the left/right. (Same color scheme as in Fig. 1a, b). Scale bars indicate 20 spikes/s. b Same as a, but for five neurons recorded from
motor cortex. c Same as a and b, but for five example muscle recordings. The bottom of the vertical scale bars indicates zero EMG activity, but the scale is
otherwise arbitrary. d Frequency spectrum, computed via the Fourier transform, for the three populations. Frequency content was computed per neuron/
muscle, over the temporal interval from −250 to 250ms relative to movement onset. Frequency content was then normalized and averaged. Envelopes
show 95% confidence intervals computed via bootstrap, resampling neurons/muscles. Data are for monkey Ba. e Same as d, but for monkey Ax
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multiple peaks and/or phases that varied with condition.
Individual neurons displayed a variety of diverse and complex
responses45. Directional selectivity often differed before and
during movement, or early versus late during movement45–50.
Robust activity was typically present across contexts. The above
results are consistent with the finding that SMA has directional
responses not unlike those in motor cortex, and is responsive
during both self-initiated and externally cued movements27,28,31.

Muscle responses were also often complex and multiphasic
(Fig. 2c). Muscles did not show changes in activity until just
before movement onset, with some exceptions. For example,
baseline activity of the medial deltoid for monkey Ax (third
subpanel) increased slightly overall, well before movement (more
so for the quasi-automatic context). These changes presumably
reflect a slight tensing in anticipation of the pending reach.
Relative to neural activity in the same time-range, changes in
muscle activity were sparse, small, and weakly directional.

Standard population analyses for SMA and motor cortex. The
population vector51, a summary based on directional aspects of
activity, behaved similarly for SMA and motor cortex (Fig. 3a, b,
monkey Ba; Supplementary Fig. 2, monkey Ax). We found only
small differences between the two areas. We first considered the
vector magnitude, relative to the firing rates of the contributing

neurons. Comparing SMA with motor cortex, vector magnitude
was similar: slightly larger for monkey Ba (5%, N.S.) and smaller
for monkey Ax (24%, p < 0.01). For both monkeys, the SMA
population vector was slightly, but not significantly, less-well
aligned with target direction.

We also employed the population PSTH: for each neuron, we
identified the most-preferred condition (the condition that evoked
the largest firing rate over a 500ms window centered on
movement onset) then averaged that response across neurons. A
similar average was produced for the least-preferred condition and
all intermediate conditions. This analysis was repeated separately
for each context. The resulting population PSTHs (Fig. 3c, d)
reveal that preparatory tuning (variation of firing rate with target
direction) developed shortly after target onset for the cue-initiated
and quasi-automatic contexts (red and yellow) and somewhat later
for the self-initiated context (blue). Stronger movement-related
tuning then arose ~150 ms before movement onset.

Population PSTHs showed only modest differences between
areas. Population PSTHs reveal slightly stronger preparatory
versus movement-period tuning for SMA. This was consistent
with single-neuron observations; the median ratio of preparatory
to movement tuning was higher for SMA versus motor cortex
(0.79 versus 0.52 for monkey Ba; 0.81 versus 0.64 for monkey Ax;
p < 0.01 for both via rank sum test). For monkey Ba tuning tended
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Fig. 3 Population vectors and population PSTHs for monkey Ba. a SMA population vectors for each of the three contexts. Each cluster of lines corresponds
to one of the eight reach directions. The length of each black line indicates the firing rate of one neuron for that direction and context, and points in that
neuron’s preferred direction. Colored traces plot (on a different scale) the sum of those vectors. For each neuron, the preferred direction was computed
based on firing rates across all directions and contexts. b Motor cortex population vectors. Scaling is arbitrary and differs between the two brain areas, as
they had different average firing rates (see main text). c SMA population PSTHs for the three contexts. Shading is ordered from most-preferred direction
(lightest) to least-preferred (darkest) within each context. d Motor cortex population PSTHs
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to remain high slightly longer for SMA, but the opposite tendency
was observed for monkey Ax. Despite these modest differences,
population PSTHs were strongly correlated between areas. For
monkey Ba, correlations were 0.92, 0.96, and 0.92 for the three
contexts. For monkey Ax, correlations were 0.94, 0.96, and 0.92.
The lower bound of the 95% confidence intervals was >0.90 for all
comparisons.

Frequency spectra also revealed only modest differences
between SMA and motor cortex (Fig. 2d, e). There was slightly
greater power in the 1.5–3 Hz range for motor cortex (and for the
muscles) versus SMA. This range includes frequencies followed
by rotational dynamics in prior studies. This is potentially
suggestive, but no more: SMA also had considerable power in this
range.

Thus, SMA and motor cortex appear reasonably similar when
analyzed via these standard methods. However, these methods are
suited to revealing certain aspects of the population response but
not others. For example, the frequency spectrum does not
distinguish between power organized into coherent rotations
versus disorganized trajectories. The population vector confirms
the presence of directional responses but does not capture other
response properties. Population PSTHs reveal the rough envelope
of tuning, but not how activity evolves within that envelope.
Indeed, population PSTHs incorrectly suggests that tuning
remains consistent with time. Analyses of dynamics provide an
alternative approach that might sidestep these limitations.

Hypothesis-guided dimensionality reduction. We employ the
perspective that single-neuron responses reflect latent variables
that are shared across the population11,52–57 and can be estimated
using dimensionality reduction methods58–63. A standard linear
model of each neuron’s response is:

at;n ¼
X
k

xt;kwk;n ð1Þ

where at,n is the firing rate of neuron n at time t, xt,k is the value of
the kth latent variable, and wk,n determines the contribution of
that latent variable to the response of neuron n. A key question is
whether the evolution of xt, the vector of latent variables, is
described by a dynamical flow field. Is it the case that _xt � f xtð Þ
for some function f(·), perhaps with some linear approximation:
_xt � xtD? If so, is D dominated by rotations or other forms of
dynamics? These questions cannot be addressed at the single-
neuron level. Neither multiphasic firing rates6 nor data smooth-
ness imply rotational dynamics64; much depends on how phases
are coordinated across neurons and conditions65.

We previously examined motor cortex responses using a
method, jPCA, that seeks latent variables described by rotational
dynamics. jPCA has two shortcomings given our present goals.
First, when comparing areas, we wish to make fewer assumptions
regarding the form of dynamics. Second, the central motif
predicted by motor-cortex network models includes both
rotational dynamics and a condition-invariant shift of the neural
state42. We previously resorted to multiple methods (dPCA66

followed by jPCA) to test for the presence of the central motif5.
That approach is suboptimal; latent variables should ideally be
found in a unified fashion.

To do so, we employ a hypothesis-guided dimensionality
reduction (HDR) methodology. Recent work observes that most
dimensionality reduction methods implicitly or explicitly employ
a cost function67, and that different cost functions embody
different hypotheses. For example, PCA embodies the simple
hypothesis that the most relevant signals are the largest signals,
while dPCA66 posits that different dimensions contain activity
that co-varies with different task parameters. Here we follow this

lead and leverage the suggestion that “future linear dimension-
ality reduction algorithms can be derived in a simpler and more
principled fashion”67. We adopt a cost function tailored to our
specific hypothesis: there may exist a projection of the data that
captures a large percentage of response variance, with some
dimensions capturing condition-invariant structure and other
dimensions capturing structure described by linear dynamics.

We consider the data matrix, A, where each column contains
the firing rate of one neuron across times and conditions. We
estimate the latent variables as a projection, X=AWT, where each
column of X contains the values of one latent variable across
times and conditions. The rows of the orthogonal matrix W are
the “neural dimensions”, found by minimizing a cost function f
(W). Because the above hypothesis contains three components,
we employ a tripartite cost function:

f Wð Þ ¼ frec Wð Þ þ finvar Wð Þ þ fdyn Wð Þ ð2Þ

The first term, frec(W), is identical to the PCA cost function, and
is small if the latent variables capture considerable variance (i.e., if
the firing rates in A are accurately reconstructed by Arec=XW).
The second two terms relate to the hypothesis that there exists
condition-invariant structure in some dimensions and dynamical
structure in other, orthogonal dimensions. If so, an appropriate
W will result in latent variables X=[Xinvar, Xdyn]. Xinvar are latent
variables that vary with time but not condition. Xdyn are latent
variables whose evolution obeys linear dynamics. finvar(W) is
small if Xinvar varies strongly with time but not condition. fdyn(W)
is small if the fit _Xdyn � XdynD is good for some choice of D.
Equations for frec(W), finvar(W), and fdyn(W) are provided in the
Methods. By minimizing f(W) we ask the question: does there
exist a projection of the population response that captures
considerable variance and has the hypothesized condition-
invariant and dynamical structure?

For each population, we minimized f(W) via gradient descent
onW, then used those dimensions to find the latent variables. We
refer to Xinvar as the projection onto “condition-invariant
dimensions”. Of course, whether Xinvar actually displays the
hypothesized condition-invariant structure is an empirical
question. We refer to Xdyn as the projection onto “dynamical
dimensions”. Again, whether Xdyn actually displays dynamical
structure is an empirical question. We set the total number of
dimensions to six, and sought two condition-invariant dimen-
sions and four dynamical dimensions.

As with other methods, it is important to know whether
dimensions capture considerable data variance. Notably, PCA
minimizes frec(W) while we are asking HDR to minimize
frec(W) + finvar(W) + fdyn(W). Thus, the variance captured by
PCA is the maximum that could possibly be captured by HDR;
HDR must sacrifice some captured variance as it seeks the
hypothesized structure. In practice, the six HDR dimensions
captured only modestly less variance than the first six PCs, and at
least as much variance as PCs 2-7. This was true for both
monkeys, both cortical areas, and the muscle populations
(Supplementary Fig. 3). Employing more than six dimensions
captured slightly more variance but yielded little improvement in
capturing condition-invariant or dynamical structure.

HDR optimizes jointly for all aspects of the hypothesized
structure. In contrast jPCA employs PCA or dPCA and then
seeks rotational structure5,6, which could cause structure to be
missed. Unlike jPCA, the present use of HDR does not focus on
rotations per se, reducing concerns that the method imposes a
particular form of dynamics. HDR is thus simultaneously more
principled, more powerful, and more conservative that past
approaches.
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Qualitative assessment of dynamical structure. We plotted pairs
of latent variables against one another, yielding projections of the
data onto two-dimensional planes. Figure 4 shows three such
planes for monkey Ba. We first focus on two “dynamical planes”,
each showing the projection onto two of four dynamical
dimensions. Within a projection, each colored state trajectory
describes how those latent variables evolved over time for one
condition (one direction/context). For motor cortex (Fig. 4,
middle row) both dynamical planes captured rotational structure.
Trajectories rotated in the same direction, at approximately the
same angular velocity, with phase and amplitude varying across
conditions. Trajectories are shown from 80ms before until 150
ms after movement onset (reaches lasted ~200 ms). Trajectories
continued rotating for 50–100 ms after the interval shown (the
shorter plotted interval minimizes overlapping traces).

The SMA population (Fig. 4, top row) did not exhibit structure
that followed a clear dynamical flow-field (quantification to
follow). Rotational structure was weak, and trajectories appeared
somewhat disorganized. We stress that this does not imply that
the SMA population response is truly disorganized, simply that it
is not well described by the hypothesis of approximately linear
dynamics. As will be described subsequently, SMA did exhibit
other clear structure that could be identified by the HDR
approach.

Individual-muscle responses were often multi-phasic, and in
many ways resembled individual-neuron responses. Yet the

muscle population showed little coherent rotational tendency
(Fig. 4, bottom row). State trajectories often formed loops, but the
sign and degree of curvature was inconsistent across conditions.
Still, visual inspection suggests some potential commonality
between muscle and motor-cortex populations. For example, the
first dynamical plane for the muscles resembled that for motor
cortex, but viewed from the side. We will return below to this
potential connection.

Results were similar for monkey Ax (Fig. 5). The motor cortex
population showed robust rotations in two dynamical planes.
Some weak rotational structure was present for SMA (more so
than for monkey Ba) but the flow-field was not well organized:
some trajectories clearly rotated, but many others did not. The
muscle population also showed little dynamical structure; looping
trajectories were not organized into coherent rotations.

Quantification of dynamical structure. For each population, we
asked how well Xdyn, the state in the dynamical dimensions, obeys
linear dynamics. We fit with _Xdyn � XdynD, where _Xdyn is the
time derivative of Xdyn, and D is the matrix that provides the best
fit. D is unconstrained and can capture rotational or other linear
dynamics. Results are summarized in Fig. 6a, b (bars labeled “D”).
For SMA, the dynamical fit was poor (R2= 0.22, monkey Ba) or
moderate (R2= 0.52, monkey Ax). The dynamical fit was
also moderate for the muscle populations: R2= 0.41 and
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Fig. 4 State-space plots of the latent variables identified by HDR for monkey Ba. HDR was applied separately for SMA, motor cortex, and muscle
populations. Each sub-panel plots the joint evolution of two latent variables (equivalent to a projection of the full neural state onto two dimensions). Each
colored trajectory corresponds to one condition and plots the values of the latent variables from −80 to 150ms relative to movement onset. The beginning
and end of each trajectory is indicated by a circle and arrow, respectively. Color-coding is as in Figs. 1a, b and 2a–c: red, blue, and yellow trajectories
correspond to the three contexts, while darker/lighter traces correspond to leftward/rightward movements. Dashed lines are included to aid visualization
and indicate the local direction of flow (this was often less consistent for SMA and the muscles than for motor cortex). Scaling is arbitrary but the same
scale is always used for the horizontal and vertical axis within each subpanel
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0.46. The dynamical fit was best for the motor cortex populations:
R2= 0.84 and 0.76. The difference between SMA and motor
cortex was significant (p < 0.001 for both monkeys) based on a
bootstrap that redrew conditions to establish confidence intervals.
We also employed a highly conservative bootstrap that redrew
dimensions rather than conditions (Methods). This approach
treats the combined SMA and motor cortex latent variables as a
large undifferentiated set of latent variables in a common popu-
lation. The bootstrap then asks how often two arbitrary “areas”,
each containing a subset of those variables, differ by as much as
the empirical SMA and motor cortex datasets. Even via this very
conservative method, the difference between SMA and motor
cortex was significant: p < 0.0001 for monkey Ba and p < 0.04 for
monkey Ax.

The projections in Figs. 4 and 5 suggest that a large difference
between SMA and motor cortex dynamics is the prevalence of
rotations. To quantify this, we decomposed the matrix D into its
symmetric and skew-symmetric components D=Dsym+Dskew. If
dynamics are dominated by rotations, D will be naturally close to
skew symmetric, such that Dskew≈D. If so, the dynamical fit
provided by Dskew will be both high and nearly as good as the
dynamical fit provided by D.

Motor cortex dynamics were dominated by rotations in a way
that SMA dynamics were not. For monkey Ba, the fit provided by
Dskew was more than six-fold better for motor cortex versus SMA
(Fig. 6a, compare middle blue and black bars; R2= 0.74 versus
0.11). For monkey Ax, the fit provided by Dskew was almost three-
fold better for motor cortex versus SMA (Fig. 6b, compare middle
blue and black bars; R2= 0.62 versus 0.23). These differences
were statistically significant (for the conservative test: p < 0.001
for monkey Ba and p < 0.05 for monkey Ax). The different

dominance of rotational dynamics is also apparent when
comparing within each area. For SMA, the R2 associated with
Dskew was at most half as large the R2 associated with D (Fig. 6a,
b, compare middle and left black bars). For motor cortex the R2

associated with Dskew was almost as high as the R2 associated with
D (Fig. 6a, b, compare middle and left blue bars). For the muscles,
the R2 associated with Dskew was negative (Fig. 6a, b, middle
magenta bar) and significantly different from that in motor cortex
by both tests. (Negative values of R2 are possible if D is far from
skew-symmetric).

In addition to considering Dskew (the skew-symmetric
component of the best-fit dynamics matrix), we also considered
D�

skew, the skew-symmetric matrix that provides the best fit. For
SMA, the R2 associated with D�

skew was low (Fig. 6a, b, right
black bar). For motor cortex, the R2 associated with D�

skew was
higher (Fig. 6a, b, right blue bar) and only modestly less than
the R2 associated with D. Comparing SMA versus motor cortex,
the R2 associated with D�

skew was statistically different via
bootstrap (for the conservative test: p < 0.001 for monkey Ba
and p= 0.01 for monkey Ax). For the muscles, the R2

associated with D�
skew was small and statistically different from

that for motor cortex (for the conservative test: p < 0.0001 for
both monkeys).

As suggested by inspection of Figs. 4 and 5, what little
rotational structure was present in SMA occurred at frequencies
lower than in motor cortex. To quantify frequency, we analyzed
the purely rotational system described by D�

skew. For SMA, all
rotational frequencies were below 1.1 Hz for both monkeys and
both dynamical planes (Fig. 6c, d, black bars). For motor cortex,
rotational frequencies were higher: the greater was ~3 Hz and the
lesser was between 1.5 and 2 Hz (Fig. 6c, d, blue bars). The 1.5–3

First dynamical
plane

Second dynamical
plane

Dynamical vs
condition-invariant

Motor
cortex

EMG

SMA

dy
n 2
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n 3

dy
n 1

dy
n 2

dy
n 3
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n 1
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n 2
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n 3

dy
n 1

dyn1 dyn4 Invar1

dyn1 dyn4 Invar1

dyn1 dyn4 Invar1

Fig. 5 State-space plots for monkey Ax. Format as in Fig. 4. Scaling is arbitrary but the same scale is always used for the horizontal and vertical axis within
each subpanel. Scaling is sometimes altered across subpanels. In particular, for motor cortex, scaling was reduced for the third column to allow plotting of
the first condition-independent latent variable, which had a very large magnitude
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Hz frequencies in motor cortex are consistent with prior findings,
and with models that use oscillatory dynamics to provide a basis-
set for outgoing muscle-commands6,41,42.

Thus, SMA and motor cortex differed in essentially every
aspect of their dynamical structure. SMA population activity was
less well fit by linear dynamics overall. SMA dynamics were not
dominated by rotations, and what rotational structure was
present occurred at frequencies lower than in motor cortex. A
potential concern is that perhaps SMA and motor cortex are truly
similar, but dynamics in SMA were missed because lower firing
rates yielded lower signal-to-noise. This is unlikely for three
reasons. First, dimensionality reduction effectively denoises
responses by leveraging commonalities across neurons68. Given
that we recorded 141 (monkey Ba) and 186 (monkey Ax) neurons
from SMA, signal-to-noise is unlikely to be a large issue. Second,
if signal-to-noise were poor in our SMA recordings, the variance
captured by HDR should be much lower for SMA. In fact, both
HDR and PCA captured slightly more variance for SMA versus
motor cortex (Supplementary Fig. 3). Third, condition-invariant
structure would be weakened if noise dominated signal. Yet as
will be described below, HDR readily identified condition-
invariant structure for both SMA and motor cortex.

Qualitative assessment of condition-invariant structure. HDR
revealed a condition-invariant shift in state for both areas. The
third column of Figs. 4 and 5 shows the projection onto the first
dynamical dimension and the first condition-invariant dimen-
sion. For motor cortex, the resulting two-dimensional view can be

thought of as taking the first dynamical plane and spinning it so
as to view the rotations “on edge”, revealing new structure in a
third dimension. This view reveals a large condition-invariant
translation: trajectories start at the left for every condition, and
translate a roughly equal distance to the right. Following the
translation, rotations (viewed on edge) occur on the right side of
the plane. This structure agrees with prior findings in motor
cortex and in simulated networks5,42.

We found that SMA also displayed a condition-invariant
translation of the neural state, something not previously reported.
This condition-invariant translation occurred alongside selectivity
for condition in other dimensions (e.g., the first dynamical
dimension separated trajectories across conditions). Both SMA
and motor cortex also showed a second dimension with
condition-invariant structure (see subsequent analyses).

Quantification of condition-invariant structure. We assessed
the degree to which projections onto the condition-invariant
dimensions were truly condition invariant. To quantify “condi-
tion invariance”, we divided the variance of the across-condition
mean by the total variance across all times and conditions. If a
signal is identical across conditions, condition invariance will be
100%. Conversely, a signal that varies strongly with condition can
have condition invariance approaching 0%. Both SMA and motor
cortex contained relatively pure condition-invariant structure
(Fig. 7a, b). For SMA, condition invariance was 96% and 95%
(monkey Ba and Ax). For motor cortex, condition-invariance was
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97% and 98%. For the muscles, condition invariance was mod-
estly lower: 86 and 91%.

For both SMA and motor cortex, the condition-invariant signal
was the dominant signal in the data: the two condition-invariant
dimensions captured nearly as much variance as the first two PCs
(Fig. 7a, b). For the muscles, condition-invariant structure was
much weaker; the condition-invariant dimensions captured far
less variance than the first two PCs. Thus, a condition-invariant
signal is prevalent only in SMA and motor cortex. Subsequent
analyses will explore whether the structure of that signal is similar
in both areas.

HDR-independent quantification of dynamical structure. By
design, the finvar(W) and fdyn(W) terms compete—any structure

captured by condition-invariant dimensions cannot be captured
by dynamical dimensions. Might this cause HDR to miss dyna-
mical structure, perhaps exaggerating the difference between
SMA and motor cortex? Empirically this was not the case.
Reducing the weighting of finvar(W) by a factor of ten had little
effect: dynamical fit quality changed little and the same difference
persisted between SMA and motor cortex.

We also applied jPCA, which is more aggressive in seeking
rotational structure. This becomes advantageous if there is a
concern that rotational structure might be missed. jPCA revealed
differences between SMA and motor cortex similar to those
revealed by HDR. For monkey Ba, jPCA yielded a dynamical fit
with an R2 of 0.12 ± 0.02 for SMA versus 0.59 ± 0.05 for motor
cortex (SEMs via bootstrap resampling neurons). For monkey Ax,
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the corresponding R2 was 0.28 ± 0.05 for SMA versus 0.55 ± 0.04
for motor cortex. As with HDR, rotational frequencies differed
across areas. For monkey Ba, the highest rotational frequency was
0.65 ± 0.13 Hz for SMA versus 2.18 ± 0.25 Hz for motor cortex.
For monkey Ax, the highest rotational frequency was 0.95 ± 0.19
Hz for SMA versus 2.19 ± 0.32 Hz for motor cortex.

Finally, we applied a less principled but very simple approach.
We fit an unconstrained linear dynamical system to trajectories in
the six dimensions, found via PCA, that captured the most
condition-specific variance. Analysis was repeated, drawing new
populations to allow bootstrap-based confidence intervals.
Figure 7c, d plots the resulting eigenvalue spectra (each symbol
plots one of the six eigenvalues for a given bootstrap repetition).
Symbol size indicates fit quality, which was significantly lower for
SMA versus motor cortex (monkey Ba: R2= 0.15 ± 0.02 versus
0.63 ± 0.05; monkey Ax: R2=0.33 ± 0.05 versus 0.60 ± 0.04).
Eigenvalue structure also differed. For SMA, the imaginary

(rotation-inducing) component never became as large as for
motor cortex. For monkey Ba, the largest eigenvalue (of the non-
bootstrapped data) had an imaginary component of 0.040i ±
0.011i for SMA versus 0.144i ± 0.17i for motor cortex (0.144i
corresponds to a frequency of 2.3 Hz). The corresponding values
for monkey Ax were 0.044i ± 0.017i versus 0.92i ± 0.18i. For
motor cortex, eigenvalues tended to form two clusters at distinct
frequencies. Little or no comparable structure was visible for
SMA.

Potential functions of SMA and motor cortex signals. It has
been hypothesized that rotational dynamics in motor cortex
relate to the generation of multiphasic aspects of muscle activity
within a movement6,41,42,65 or across sub-movements43. To
explore a possible connection with muscle responses, we
regressed muscle activity versus SMA and motor cortex activity.
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This analysis considered only the dynamical dimensions, which
captured condition-specific response aspects. Each dimension
of muscle activity was simultaneously regressed against all eight
dimensions of neural activity (four each from SMA and motor
cortex). The full fit (average R2 of 0.58 and 0.72 for monkey Ba
and Ax) was thus the sum of contributions from SMA and
motor cortex (Fig. 8a, b). The SMA contribution was dominated
by slower signals; higher frequencies were present primarily in
the form of rapid ramps. In contrast, the motor cortex con-
tribution contained overtly multiphasic structure (which dif-
fered across monkeys, as did the muscle responses being fit). To
provide quantification, we computed the difference in the fre-
quency content of SMA and motor cortex contributions
(Fig. 8c, d). SMA showed a relative lack of contribution in the
3–4 Hz range for monkey Ba and the 2–4 Hz range for monkey
Ax. Thus, the dynamical dimensions in SMA are less well-
suited than those in motor cortex to contribute multi-phasic
aspects of muscle activity.

Yet the dynamical dimensions in SMA contained a different
type of structure: activity in the dynamical dimensions varied not
only with direction, but also with the three contexts. These
contexts varied regarding the rules and cues that determined
when movement should be initiated. Yet the physical reaches
were similar across contexts (Fig. 1a, b) as were both muscle
activity and movement-related motor cortex activity44. The
present analysis confirms prior findings: for motor cortex, nearly
all variance in the dynamical dimensions occurred across time
and/or reach direction. Very little (2–3%) occurred across
contexts (Fig. 8e, f). The same was true of the muscles. However,
we found that context had a much larger influence on the neural
state in the SMA dynamical dimensions.

These findings are consistent with the oft-proposed role of
SMA in movement initiation. A computation that determines
when to move must consider the rules regarding when movement
is allowed. However, other factors (e.g., visual cues and reward
probability) also differed across contexts and could also be
responsible for the observed effects. What is clear is that SMA
responses co-vary with factors beyond the movements them-
selves, in a way that muscle activity and motor cortex activity do
not.

SMA and motor cortex share condition-invariant signals. The
above analyses reveal that the SMA and motor cortex popula-
tion responses differ in multiple ways. To ask whether there
also exist shared signals, we employed canonical correlation
analysis (CCA). CCA returns projections of one dataset that are
similar to (correlate with) projections of another dataset. We
applied CCA to the six dimensions returned by HDR and
examined the top two canonical variables; i.e., the most cor-
related projections. Each canonical variable is plotted versus
time (Fig. 8g, h) to allow comparison of temporal structure. The
top two canonical variables were highly correlated between
motor cortex and SMA (r= 0.99 and 0.95 for monkey Ba; r=
0.99 and 0.96 for monkey Ax) and were very close to condition
invariant. The condition invariance of the first canonical vari-
able was 97 and 98% (SMA and motor cortex) for monkey Ba
and 98 and 98% for monkey Ax. The condition invariance of
the second canonical variable was 87 and 90% (SMA and motor
cortex) for monkey Ba and 89 and 93% for monkey Ax.

The plots versus time in Fig. 8g, h are simply a complementary
approach, relative to the state-space plots, of viewing condition-
invariant structure. For example, the top row in Fig. 8g reveals a
largely condition-invariant shift in state from low to high. Plotted
in state-space this corresponds to a left-to-right shift in state
common to all conditions, as in Fig. 4 (right column). Thus, both

SMA and motor cortex share a large condition-invariant signal
that, for motor cortex, is known to be tightly linked to the timing
of movement onset5.

Discussion
In highly interconnected networks, neural computations are
believed to be instantiated by population-level dynamics59,69,70.
We found that SMA and motor cortex differed in nearly every
aspect of their dynamics. SMA was less-well described by linear
dynamics. To the degree that dynamical structure was present in
SMA it was not dominated by rotations. In particular, 1.5–3 Hz
rotational structure was absent in SMA, despite being prevalent in
motor cortex. These differences are notable because similar
dynamics might have been expected for at least three reasons.
First, single-neuron responses in SMA and motor cortex appear
broadly similar during delayed-reach tasks, in both the present
and prior studies17,21,27,31. Indeed, prior studies specifically
sought clear differences between SMA and motor cortex during
non-sequential reaches, but did not find them. Second, an
appealing idea is that different areas apply a canonical compu-
tation to area-specific information34,35. Finally, it has remained
controversial whether rotational dynamics in motor cortex reflect
a specific computation, or are a generic property of complex,
high-dimensional data64. The present results make clear that
classes of dynamics can be specific to different areas.

SMA responses appeared disorganized in the dynamical
dimensions. This is expected if responses do not obey the range of
hypotheses embodied in the HDR cost function. Ideally, we
would have employed other cost functions that embodied other
hypotheses. However, neither past nor present results have yet
yielded sufficiently concrete hypotheses regarding SMA to allow
this strategy. That said, aspects of the present findings—in
combination with prior work—suggest broad hypotheses that
could be further refined. First, SMA possessed signals that could
potentially contribute slower, non-multiphasic, features of muscle
activity. Such a contribution is plausible given that SMA con-
tributes to the corticospinal tract. Second, SMA activity reflected
the behavioral constraints governing when movement should be
initiated. Notably, such signals were present even during move-
ment, after initiation. These observations suggest that the com-
putations in SMA respect the broader context in which
movement is executed.

Both SMA and motor cortex shared a condition-invariant shift
in state. For both areas the condition-invariant shift was large,
contributing almost as much variance as the first two PCs. Such a
shift is not an inevitable consequence of surface-level response
features5 (e.g., overall increases in firing rate). For example,
muscles activity often showed an overall increase across condi-
tions, yet the muscle population exhibited a weak condition-
invariant shift. We interpret the condition-invariant shift as
reflecting neural events related to triggering movement. For
example, in motor cortex, the timing of the condition-invariant
shift is highly predictive of trial-by-trial variability in movement
onset5. Furthermore, the condition-invariant shift is predicted by
network models5, where it does indeed serve the function of
recruiting movement-generating dynamics.

The present data reveal that the shift is not only invariant with
reach direction, it is also invariant with context. This is consistent
with the tentative hypothesis that more “cognitive” computations
(perhaps involving SMA) take context into account, but that the
final signal that triggers movement onset no longer contains
context information. That said, our data do not speak to the
causal flow. The shift could arise in SMA and be immediately
communicated to motor cortex, or the reverse could be true. It is
also plausible that both areas inherit the shift from a common
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input, or that the shift is generated by global dynamics in which
many areas participate. These possibilities are difficult to resolve
based on present observations. Synaptic latencies and transmis-
sion times occur on a timescale (a few milliseconds) an order of
magnitude faster than the timescale on which shift unfolds (tens
to hundreds of milliseconds), making it difficult to infer causality
from chronology.

Our principal goal in applying HDR was to compare SMA and
motor cortex. However, the use of HDR also clarifies the pre-
valence of rotational dynamics within motor cortex. The dyna-
mical dimensions sought by HDR could have captured any type
of linear dynamical structure: rotations, contractions, expansions,
shear, or other forms of non-normal dynamics. In particular,
expansions would be predicted if motor cortex signals encode a
consistent preferred direction (e.g., if responses encode hand
velocity or position). Instead, the dynamical dimensions for
motor cortex were dominated by rotational structure, consistent
with the emergence of rotational dynamics in network models
trained to produce muscle activity42. In accord with this inter-
pretation, dynamical dimensions for motor cortex contained
features that matched, and thus may be contributing to, multi-
phasic aspects of muscle activity.

In summary, our results demonstrate that neural responses in
SMA and motor cortex appear similar in many ways, including at
the single-neuron level and when analyzed via standard methods.
At the population level, both areas share a condition-invariant
signal. Yet there are large differences that become apparent when
focusing on dynamics. Furthermore, population activity in the
two areas covaries differently with muscle activity and with task
constraints. These findings argue that SMA and motor cortex are
processing different types of information via different dynamics,
presumably with different computational goals.

Methods
Subjects and task. Subjects were two adult male macaque monkeys (Macaca
mulatta) aged 10 and 14 years and weighing 11–13 kg. Daily fluid intake was
regulated to maintain motivation to perform the task. All procedures were in
accord with the US National Institutes of Health guidelines and were approved by
the Columbia University Institutional Animal Care and Use Committee. Subjects
sat in a primate chair facing an LCD display and performed reaches with their right
arm while their left arm was comfortably restrained. Hand position was monitored
using an infrared optical system (Polaris; Northern Digital) to track (~0.3 mm
precision) a reflective bead temporarily affixed to the third and fourth digits.

We employed a center-out reaching task with three “contexts”44. Briefly, each
trial began when the monkey touched and held a central touch-point. After the
touch-point was held for 450–550 ms (randomized) a colored 10 mm diameter disc
(the target) appeared in one of eight possible locations radially arranged around the
touch point. In each context, similar reaches were made but the cue to initiate the
reach was different. Touch-point and target color indicated context: red for cue-
initiated, blue for self-initiated, and yellow for quasi-automatic. Target distance was
130 mm for cue and self-initiated contexts and began at 40 mm for the quasi-
automatic context (final reach distance was similar in all contexts—see below).
Trials for different contexts/directions were randomly interleaved.

In the cue-initiated context, after a variable delay period (0–1000 ms) the target
suddenly grew in size (to 30 mm) and the central touch point simultaneously
disappeared. These events served as the go-cue, instructing the monkey to make the
movement. Reaches were successful if they were initiated within 500 ms of the go
cue, had a duration <500 ms, and landed within an 18 mm radius window centered
on the target. Juice was delivered if the monkey held the target, with minimal hand
motion, for 200 ms (this criterion was shared across all three contexts).

In the self-initiated context, the target slowly and steadily grew in size, starting
upon its appearance and ending when the reach began. Growth continued to a
maximum size of 30 mm, which was achieved 1200 ms after target appearance
(most reaches occurred before this time). The reward for a correct reach grew
exponentially starting at 1 drop and achieved a maximum of 8 drops after 1200 ms.
Monkeys were free to move as soon as the target appeared, but in practice nearly
always waited some time: essentially all reaches occurred in the range from 600 to
1400 ms after target onset. In rare instances where no movement was detected
within 1500 ms after target onset, the trial was aborted and flagged as an error.

In the quasi-automatic context, the target moved radially away from the central
touch-point at 25 cm/s. Target motion began after a 0–1000 ms randomized delay
period beginning at target onset. Target motion ended if a reach succeeded in
bringing the hand to the target mid-flight. If the target was not intercepted (e.g., if

reach initiation was too slow) then the target continued moving until off the screen.
Target speed and initial location (40 mm from the touch-point) were titrated,
during training, such that the target was typically intercepted ~130 mm from the
touch-point (the same location as the targets for the other two contexts). For
successful interception, reaches had to land within an elliptical acceptance window
(16 mm by 20mm radius, with the long axis aligned with target motion). If the
target was successfully intercepted, it grew in size to 30 mm and reward was
delivered after the hold period.

In the present study, we analyze only trials where the delay period, for cue-
initiated and quasi-automatic contexts, was >400 ms. Trials with shorter delays
were included to encourage immediate and robust preparation, and because for the
purposes of another study44 we were interested in zero-delay trials in the quasi-
automatic context. However, in the present study we wished to examine
movement-period dynamics following the establishment of preparatory activity, in
keeping with refs. 5–7,42.

Neural and muscle recordings. After subjects became proficient in the task, we
performed sterile surgery to implant a head restraint. At the same time, we
implanted a recording chamber centered over the arm area of motor cortex of the
left hemisphere, including primary motor cortex (M1) and the dorsal premotor
cortex (PMd). After recordings from M1/PMd were complete, the chamber was
removed and a new chamber was implanted over the left-hemisphere SMA.
Chamber positioning was guided by structural magnetic resonance images taken
shortly before implantation. We used intracortical microstimulation to confirm
that our recordings were from the forelimb region of motor cortex (biphasic pulses,
cathodal leading, 250 µS pulse width delivered at 333 Hz for a total duration of 50
ms). Microstimulation of motor cortex typically evoked contractions of the
shoulder and upper-arm muscles, at currents from 5 to 60 μA depending on the
location and cortical layer. Microstimulation of SMA (total duration of 200 ms)
sometimes caused full-arm movements reminiscent of a reach or an intentional
arm movement at currents of ~20–100 µA. Other times, microstimulation of SMA
up to 150 µA did not elicit any movement. As expected, thresholds were often
higher in SMA. We thus used longer trains of microstimulation (and generally
higher currents) in SMA simply because this was more effective in evoking
movement, and we wished to verify that we were in arm-related SMA.

We recorded single-neuron responses using traditional tungsten electrodes
(FHC) or one or more silicon linear-array electrodes (V-probes; Plexon) lowered
into cortex using a motorized microdrive. For tungsten-electrode recordings, spikes
were sorted online using a window discriminator (Blackrock Microsystems). For
linear-array recordings, spikes were sorted offline (Plexon Offline Sorter). We
recorded all well-isolated task-responsive neurons; no attempt was made to screen
for neuronal selectivity for reach direction or any other response property. Spikes
were smoothed with a Gaussian kernel with standard deviation of 20 ms and
averaged across trials to produce peri-stimulus time histograms.

We recorded electromyogram (EMG) activity using intramuscular electrodes
from the following muscles: lower and upper aspects of the trapezius, medial,
lateral and anterior aspects of the deltoid, medial and outer aspects of the biceps,
brachialis, pectoralis, and latismus dorsi. The triceps were found to be minimally
active (consistent with our prior observations using similar tasks) and were not
recorded further. EMG signals were bandpass filtered (10–500 Hz), digitized at 1
kHz, rectified, smoothed with a Gaussian kernel with standard deviation of 20 ms,
and averaged across trials to produce peri-stimulus time histograms.

Population vector. We first defined a preferred direction for each neuron by
regressing movement-epoch firing rates (averaged over a 500 ms window centered
on movement onset) versus horizontal and vertical target location. This was done
for all 24 conditions (eight directions and three contexts). The population vector
for a given condition was the sum of these direction vectors, each weighted by the
average firing rate of the corresponding neuron.

Preprocessing. Prior to dimensionality reduction, each neuron’s response was
soft-normalized so that neurons with high firing rates had approximately unity
firing-rate range (normalization factor= firing rate range+ 5 spikes/s). This step
follows our standard approach (e.g., refs. 5,6,10), and ensures that the identified
dimensions attempt to capture the response of all neurons, rather than a handful of
high-firing-rate neurons. This is particularly important because many dimen-
sionality reduction techniques (including PCA, HDR, and jPCA) focus on cap-
turing variance. Without soft-normalization, a neuron with a firing rate of
75 spikes/s would contribute 25 times more variance than a neuron with a firing
rate of 15 spikes/s.

Hypothesis-guided dimensionality reduction. Dimensionality reduction began
by formatting neural (or muscle) responses as a matrix, A, where each column
contains the responses of one neuron, concatenated across all times and conditions.
A is thus of size CT×N where C is the number of conditions, T is the number of
time points and N is the number of neurons. We also consider A, where each
element describes the derivative of the firing rate for the corresponding condition,
time and neuron. We seek a CT×K matrix, X, where each column describes one of
K latent variables (K was set to six for all analyses). X is found via projection:
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X=AWT, where W is a K×N orthogonal matrix. Each latent variable is thus a
weighted sum of individual-neuron responses, with the weights defining K
dimensions in neural space. Those weights were found by optimizing a cost
function:W ¼ argmin

W
f Wð Þ, with the constraint thatW is orthonormal. We used a

tripartite cost function: f(W)=frec(W)+finvar(W)+fdyn(W), with each term corre-
sponding to one aspect of the guiding hypothesis.

The first term, frec(W), is identical to the cost function used by PCA, and
encourages the dimensions in W to capture variance in A, such that A can be
reconstructed reasonably accurately from X. Because W is an orthogonal matrix,
Arec=XW=AWTW is the optimal linear reconstruction of A (in terms of
minimizing mean squared error) from X. Thus,

frec Wð Þ ¼ A� Areck k2fro¼ A� AWTW
�� ��2

fro
. The squared Frobenius norm, �k k2fro ,

is the sum of the squares of the individual elements. frec(W) is small if A can be
reasonably well reconstructed from X. PCA can be thought of as a special case of
HDR, where only the term frec(W) is used. This corresponds to the 0th order
hypothesis that the largest signals (those that most dominate the responses of single
neurons) are important.

The second and third terms relate to the hypothesis that there exists condition-
invariant structure in some dimensions and dynamical structure in other,
orthogonal dimensions. We consider W to be partitioned into two parts: W=
[Winvar;Wdyn]. This results in a partitioned

X ¼ Xinvar;Xdyn

h i
¼ A WT

invar;W
T
dyn

h i
¼ AWT. The second and third terms of the

cost function relate to Xinvar and Xdyn, respectively.
The second term of the cost function, finvar(W), is small if Xinvar ¼ AWT

invar is
invariant across conditions. We set
finvar Wð Þ ¼ trace WinvarCacrossW

T
invar

� �
=trace WinvarCindW

T
invar

� �
. Where, Cind is the

covariance matrix describing the aspects of A that are condition-independent, and
Cacross is the covariance matrix describing the aspects of A that vary across
conditions. Cacross is constructed by computing the covariance after removing, for
each neuron, the cross-condition mean: the average firing rate at each time across
all conditions. Cind is the covariance of the cross-condition mean itself. finvar(W), is
thus small if, for the latent variables in Xinvar, the cross-condition mean varies
strongly with time but there is little variance among conditions around that mean.

The third term of the cost function, fdyn(W), attempts to identify a Wdyn where
the resulting Xdyn ¼ AWT

dyn and its temporal derivative, _Xdyn ¼ _AWT
dyn are linearly

related, such that _Xdyn � XdynD for some D. Assume that D is chosen to provide

the best fit, which can be accomplished by setting D ¼ Xy
dyn

_Xdyn, where † indicates

the pseudo-inverse. Then the variance accounted for by the fit is XdynD
���

���
2

fro
. To

find a W that maximizes this variance, we set

fdyn Wð Þ ¼ �XdynD
���

���
2

fro
¼ � XdynX

y
dyn

_Xdyn

���
���
2

fro
¼ � ðAWT

dynÞðAWT
dynÞyð _AWT

dynÞ
���

���
2

fro

. fdyn(W) is thus small if the dimensions in WT
dyn capture structure whose temporal

evolution (for all conditions) is well described by a linear dynamical system.
Minimizing f(W) thus produces projections that balance capturing maximal

data variance, finding a set of dimensions where trajectories are similar across
conditions, and finding another set of dimensions where trajectories are fit by a
linear dynamical system.

Iterative optimization is required to find the minimum-cost projection matrix
W. Full details of the optimization technique can be found in ref. 67. In brief, we
wish to take gradient steps in the objective function f(W) while respecting the
constraint that W is an orthogonal matrix (W belongs to the Stiefel manifold). To
do so, we first project the gradient ∇f ðWÞ onto the tangent space of the constraint
manifold, step in that direction, and then project the result back onto the constraint
manifold. Although not guaranteed to reach the global optima (since the constraint
manifold is nonconvex), this optimization is provably convergent to a local
optimum. In practice we found the lack of global guarantee was not a major
concern: for the datasets we analyzed, re-running optimization multiple times with
different initializations resulted in final W that spanned very similar spaces. For the
datasets analyzed here, optimization converged relatively rapidly (~1 s on a 2017-
era Apple Macbook Pro running Matlab 2016b).

Finding the best-fit purely rotational linear dynamics. For some analyses, we
wished to ask how well trajectories in the dynamical dimensions could be described
by purely rotational linear dynamics, if rotational dynamics were fit directly. To do

so, we found D�
skew ¼ argmin

D

_Xdyn � XdynD
���

���
fro
, subject to the constraint that D=

−DT (i.e., that D is skew-symmetric). �k kfro indicates the Frobenius norm, which in
this case is simply the root-mean-squared error of the fit6. This is equivalent to
performing regression, but with the constraint that the fit is provided by a purely
rotational system. The eigenvalues of D�

skew are imaginary and were used to
compute the rotational frequencies in Fig. 6c, d.

Bootstrap tests for statistical significance. Dimensionality reduction yielded
latent variables with different properties for different datasets. For example,
although HDR always sought dynamical dimensions where _Xdyn � XdynD, the
goodness of this fit (the R2) varied between SMA, motor cortex, and muscle

populations. To ask whether R2 differed between areas, one might be tempted to
simply regress _Xdyn against Xdyn and compare the traditional confidence limits on
R2. However, this approach will overstate significance because, for both Xdyn and
_Xdyn, rows are not independent (e.g., nearby times tend to have similar states and
similar derivatives). We therefore sought alternative approaches.

First, we employed a bootstrap in which we redrew, with replacement, 24 new
conditions from the original 24. Each column of Xdyn and _Xdyn was modified to
include data from the 24 redrawn conditions. We then recomputed the R2. This
process was repeated 1000 times to provide the sampling distribution. The p-value
for a given comparison was the number of draws where the effect was not observed:
e.g., if the R2 for motor cortex was greater than the R2 for SMA for both the original
data and for 995/1000 bootstrap draws, then p=0.005.

The bootstrap described above accounts for the possibility that the R2 for one
dataset might appear larger than that for another dataset due to “random”
differences in individual-condition trajectories. This is reasonable, as the quality of
the dynamical fit is in large part determined by whether different conditions obey
the same dynamical flow-field. However, this approach does not address a different
concern: perhaps the group of neurons recorded from one area simply happened to
have more dynamical structure. This concern could be addressed by redrawing
neurons, but that would not address the larger concern that different patches of
cortex might be more or less “dynamical”, e.g., perhaps motor cortex recordings
simply happened to encounter a more dynamical group of neurons than did SMA
recordings. To address this potential concern, we employed a very conservative
bootstrap. This approach treated the four dynamical dimensions recorded from
one area (e.g., motor cortex) and the four dynamical dimensions recorded from
another area (e.g., SMA) as constituting eight dimensions in one larger
undifferentiated “area”. We then drew four random dimensions from this eight-
dimensional space, and computed the R2. This was done twice, and we computed
the difference in R2. We then collected a distribution of such differences across
1000 repetitions. This procedure asks how often one would observe a large
difference in R2 if there were truly no difference other than a random bias in which
dimensions were sampled. The p-value was the number of such differences that
were as large or larger than the empirical difference, e.g., if random
differences were smaller than the empirical difference for 995/1000 repetitions,
then p=0.005.

jPCA- and PCA-based approaches to assessing dynamics. We applied the jPCA
algorithm as described in ref. 6. This involved three steps. First, for each neuron the
cross-condition mean was removed such that the average firing rate (across con-
ditions) was zero. Second, PCA was applied and the projection onto the top six PCs
was retained. Third, we found the best-fit rotational linear dynamics (see above)
that described the evolution of activity in those dimensions. Subsequent analysis
focused on the features of these linear rotational dynamics, including fit quality and
rotation frequency. The removal of the cross-condition mean (the first step) was
important to ensure that PCA found dimensions where activity co-varies across
conditions. Without this step, the first two dimensions are typically close to con-
dition invariant. Notably, HDR did not employ this initial step because condition-
invariant and condition-specific structure were isolated via a different (and gen-
erally preferable) method: by projection onto orthogonal dimensions. The PCA-
based approach was nearly identical to the jPCA-based approach, but in the third
step we fit with an unconstrained linear dynamical system. For both approaches,
we applied a bootstrap procedure. The neural population was redrawn 100 times
with replacement, and the analysis was repeated each time. This allowed us to put
confidence intervals on measures such as the dynamical fit and the rotation fre-
quencies, and to plot the eigenvalue spectra for multiple bootstrap repetitions to
illustrate when values did or did not cluster.

Code availability. Code related to the dimensionality reduction approach of ref. 67

is provided at: https://github.com/cunni/ldr. Optimization code specific to
the present study is available upon request to the corresponding author.
The jPCA code package is available from the Churchland laboratory website:
http://churchlandlab.neuroscience.columbia.edu

Data availability. All datafiles used to produce the figures and analyses in this
manuscript are available, in matlab format, by direct request made to the corre-
sponding author.
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